PENAMBAHBAIKAN PRESTASI MELALUI PEMAHAMAN SISTEM PENGAJARAN DAN PEMBELAJARAN KE ARAH INOVASI DAN AMALAN TERBAIK
Abstract
Pendidikan memainkan peranan kritikal di peringkat sejagat dalam usaha membangunkan dan memperkembangkan tenaga kerja berkemahiran tinggi. Salah satu cabaran dalam pendidikan ialah sebahagian besar pelajar yang tidak menguasai bahan mengikut standard yang dikehendaki. Sehubungan dengan itu, kertas ini menumpukan kepada kajian proses pengajaran dan pembelajaran ke arah penambahbaikan inovasi dan amalan terbaik. Mata pelajaran matematik ini dipilih memandangkan peratusan pelajar yang memilih kursus sains tulin semakin merosot saban tahun di peringkat sekolah menengah dan memberi kesan kepada bilangan pelajar jurusan sains di universiti. Untuk memahami isu prestasi ini, proses pengajaran dan pembelajaran perlu difahami dengan lebih mendalam. Kajian pelbagai kes pengajaran dan pembelajaran Matematik dikaji mengikut perspektif pemikiran bersistem. Data kajian pelbagai kes dikumpul menggunakan temubual mendalam dan pemerhatian. Seterusnya data ini dianalisis menggunakan perisian NVIVO. Dapatan kajian pertama, komponen hala tuju pengajaran dan pembelajaran memberikan pengaruh besar kepada segala aktiviti dalam bilik darjah khususnya dan sekolah amnya. Kedua, komponen proses pengajaran dan pembelajaran terdiri daripada elemen reka bentuk pengajaran, pengurusan bilik darjah, pemantauan, pentaksiran, penilaian, guru, pelajar dan kurikulum. Semua elemen dalam komponen ini berorientasikan hala tuju peperiksaan. Ketiga, komponen hasil ialah prestasi pelajar dan prestasi guru. Prestasi guru sering dinilai berdasarkan keputusan pelajar dalam peperiksaan. Keempat ialah komponen persekitaran terdiri daripada dua bahagian iaitu sokongan dan maklum balas. Maklum balas ini mesti dilihat mengikut perspektif bersistem untuk memahami perkaitan antara elemen dan komponen. Kelima, kaitan pelbagai elemen dan komponen dalam pengajaran dan pembelajaran yang saling berinteraksi antara satu sama lain dikenali sebagai sistem pengajaran dan pembelajaran. Dapatan membawa implikasi bahawa bagi mengatasi masalah prestasi dalam pengajaran dan pembelajaran, dua konsep pengajaran dan pembelajaran berikut perlu dilihat dan difahami secara mendalam sebagai satu sistem yang menyeluruh. Pertama, hanya dengan pemahaman sistem pengajaran dan pembelajaran ini, perlaksanaan inovasi dan amalan terbaik dapat dilaksanakan dengan lebih tepat berdasarkan masalah sebenar mengikut konteks. Kedua, usaha penambahbaikan sistem pengajaran dan pembelajaran secara sistematik dan berterusan diharapkan dapat meningkatkan kualiti dan skala inovasi dalam pendidikan yang boleh memberikan impak kepada masyarakat keseluruhannya.
Education plays an essential role in developing and enhancing a skilled workforce within the global sphere. One of the challenges affecting education is that most learners do not absorb the course content up to the required standard. As a result, this paper focuses on a research which is related to teaching and learning to help enhance innovations and adoption of best practices aimed at performance improvement. The study was centered on mathematics subject because the percentage of students choosing science courses at the high school level is decreasing steadily every year, thereby affecting the number of university science students. To understand this issue of performance, the teaching and learning process must be adequately followed. Multiple case study systems of teaching and learning in Mathematics, were explored based on the systems thinking viewpoint. The data was collected through comprehensive interviews and observations and then analyzed using NVIVO software. The first finding revealed that the components of teaching and learning direction have a significant impact on all classroom activities, in particular, and the school in general. Secondly, the elements of the teaching and learning process were found to comprise of teaching designs, classroom management, monitoring, assessment, teachers, students, and curriculum. All the essentials in this component are oriented towards the examinations. Third, the outcome components are student performance and teacher performance. Teacher performance is often evaluated based on the students' examination or test results. The fourth finding is an environmental component, which consists of two parts: support and feedback. This feedback must be viewed from a systematic perspective to understand the relationship between elements and components. The fifth one is the relationship between the different teaching and learning components that interact with one another, which is also known as the systems of teaching and learning. Based on the findings, it was concluded that to address performance issues in teaching and learning; the following two concepts should be perceived and understood fully as an elaborate system. Only with the understanding of this system can the implementation of innovation and best practices be executed more precisely concerning the real issues within context. Functional and systematic improvement of the teaching and learning system is expected to enhance the quality and scale of innovation in education that can impact the community as a whole.
Keywords
Full Text:
PDFReferences
Amarant, J., & Tosti, D.T. (2006). Aligning the human performance system. In J.A. Pershing (Ed.), Handbook of Human Performance Technology (3rd ed.) (pp. 1190-1223). San Francisco, CA: Pfeiffer.
Arnold, R.D. & Wade, J.P. (2015). A definition of systems thinking: A systems approach. Procedia Computer Science, 44, 669-678.
Bartlett, G. (2001). Systemic thinking: A simple thinking technique for gaining systemic focus. Paper presented at The International Conference on Thinking “Breakthroughs 2001”, Auckland, New Zealand. Retrieved from http://www.probsolv.com/systemic_thinking/Systemic%20Thinking.pdf
Bazeley, P. (2007). Qualitative data analysis with Nvivo. London: Sage.
Brethower, D. M. (1972). Behavioral analysis in business and industry: A total performance system. Kalamazoo, MI: Behavordelia.
Brethower, D.M. (2006). Systemic issues. In J.A. Pershing (Ed.), Handbook of Human Performance Technology: Principles, Practices & Potential (pp. 111-137). San Francisco, CA: Pfeiffer.
Connor, C.M., Morrison, F.J., Fishman, B.J., Ponitz, C.C., Glasney, S., Underwood, P.S., Schatschneider, C. (2009). The ISI classroom observation system: Examining the literacy instruction provided to individual students. Educational Researcher, 38(2), 85-99.
Creswell, J.W. (1998). Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, CA: Sage Publications.
Davis, B., & Simmt, E. (2003). Understanding learning systems: Mathematics education and complexity science. Journal for Research in Mathematics Education, 34(2), 137-167.
Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need) to know. Educational Studies in Mathematics, 61(3), 293-319.
Davis, B., & Simmt, E. (2014). Complexity in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 87–91). Berlin, DE: Springer.
Davis, B., & Simmt, E. (2016). Perspectives on complexity in mathematics learning. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed.). London: Taylor & Francis.
Douglas, K. (2009). Sharpening our focus in measuring classroom instruction. Educational Researcher, 38(7), 518-521.
Driscoll, M.P. (2000). Psychology of learning for instruction (2nd ed.). Boston: Allyn & Bacon.
Dyer, W. G., Jr, Wilkins, A. L., & Eisenhardt, K. M. (1991). Better stories, not better constructs, to generate better theory: A rejoinder to Eisenhardt; better J. Gustafsson stories and better constructs: The case for rigor and comparative logic. The Academy of Management Review, 16(3), 613.
Eilam, B., & Poyas, Y. (2006). Promoting awareness of the characteristics of classrooms’ complexity: A course curriculum in teacher education. Teaching and Teacher Education, 22, 337-351.
Erdi, P. (2008). Complexity explained. Berlin & Heidelberg: Springer-Verlag.
Fazalur Rahman, Nabi Bux Jumani, Yasmin Akhter, Saeed ul Hasan Chisthi & Muhammad Ajmal (2011). Relationship between Training of Teachers and Effectiveness Teaching. International Journal of Business and Social Science, 2 (4), 150-160.
Flick, U. (2006). An introduction to qualitative research (3rd ed.). Thousand Oaks, CA: Sage Publications.
Foster, D., Noyce, P., & Spiegel, S. (2007). When assessment guides instruction: Silicon Valley’s mathematics assessment collaborative. In A.H. Schoenfeld (Ed.), Assessing mathematical proficiency (pp. 137-154). Berkeley, CA: Cambridge University Press.
Fullan. M. (2006). The future of educational change: system thinkers in action. Journal Education Change, 7, 113–122.
Fullan, M. (2010). Positive pressure. In Hargreaves, A., Lieberman, A., Fullan, M. & Hopkins, D. (Eds.), Second International Handbook of Educational Change (pp. 119-130). Dordrecht: Springer.
Fullan, (2011). Choosing the wrong drivers for whole system reform. Melbourne, Australia: Centre for Strategic Education.
Fullan, M. (2014). The Principal: Three Keys to Maximizing Impact. San Francisco: Jossey-Bass.
Fullan, M. &, Langworthy, M. (2013) Towards a New End: New Pedagogies for Deep Learning. Retrieved from http://www.newpedagogies.org/
Girard, M.J., Lapides, J., & Roe, C.M. (2006). The fifth discipline: A systems learning model for building high-performing learning organizations. In J.A. Pershing (Ed.), Handbook of Human Performance Technology: Principles, practices and potential (pp. 592-618). San Francisco, CA: Pfeiffer.
Gustafsson, J. (2017). Single case studies vs. multiple case studies: A comparative study (Literature review). Retrieved from: http://www.diva-portal.org/smash/get/diva2:1064378/FULLTEXT01.pdf
Hurford, A. (2010). Complexity theories and theories of learning: Literature reviews and syntheses. In B. Sriraman & L.D. English (Eds.), Theories of Mathematics Education: Seeking new frontiers (pp. 567-589). Springer Berlin Heidelberg.
Lesh, R.A., & Sriraman, B. (2010). Re-conceptualizing mathematics education as a design science. In B. Sriraman & L.D. English (Eds.), Theories of Mathematics Education: Seeking new frontiers (pp. 123-145). Berlin Heidelberg: Springer.
Lichtman, M. (2006). Qualitative research in education: A user’s guide. Thousands Oaks, CA: Sage Publications.
Lincoln, Y.S., & Guba, E.G. (1985). Naturalistic inquiry. Beverly Hills: Sage.
Merriam, S.B. (1998). Qualitative research and case study applications in education. San Francisco, CA: Jossey-Bass Inc.
Molenda, M., & Russell, J.D. (2006). Instruction as an intervention. In J.A. Pershing (Ed.), Handbook of Human Performance Technology: Principles, Practices & Potential (pp. 335-369). San Francisco, CA: Pfeiffer.
Mullis, I.V.S., Martin, M.O., & Foy, P. (2016). TIMSS 2015 International Results in Mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Mullis, I.V.S., Martin, M.O., & Foy, P. (with Olson, J.F., Preuschoff, C., Erberber, E., Arora, A., & Galia, J.). (2008). TIMSS 2007 International Mathematics Report: Findings from IEA’s Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Nor Sakinah Mohamad. (2012). Analisis sistem pengajaran dan pembelajaran di sekolah menengah daripada perspektif teknologi prestasi manusia. Tesis Doktor Falsafah. Universiti Putra Malaysia.
Patton, M.Q. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, CA: Sage.
Pianta, R.C. & Hamre, B.K. (2009) Conceptualization, measurement, and improvement of classroom processes: Standardized observation can leverage capacity. Educational Researcher. 38(2):109–119.
Halimaton Hamdan, “Ke arah Memartabatkan Sains dan Teknologi Negara” (Kongres Kebangsaan STEM, November 2017), Retrieved from http://www.stem-malaysia.com/ uploads/1/0/5/7/105798971/stem_statistics_datuk_halimahton.pdf.
Rosenkränzer, F., Hörsch, C., Schuler, S. & Riess, W. (2017). Student Teachers’ Pedagogical Content Knowledge for Teaching Systems Thinking: Effects of Different Interventions. International Journal of Science Education 39: 1932–1951. doi:10.1080/09500693.2017.1362603
Rueda, R. (2011). The 3 dimensions of improving student performance: Finding the right solutios to the right problems. NY: Teachers College Press.
Schoenfeld, A.H. (Ed.). (2007). Assessing mathematical proficiency. Berkeley, CA: Cambridge University Press.
Schoenfeld, A.H. (2010). How and why do teachers explain things the way they do? In A.H. Schoenfeld (Ed.), Instructional explanations in the disciplines (pp. 83-106). New York: Springer.
Senge, P. (1990). The fifth discipline: The art and practice of the learning organization. New York: Doubleday.
Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.
Refbacks
- There are currently no refbacks.
Index