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ABSTRACT 
 

The global population is undergoing a significant aging process due to increased life expectancy and declining fertility 
rates. This demographic shift has altered the age structure of the workforce, with more older individuals continuing 
to work until retirement. As a result, many countries, including Malaysia, have experienced rising labor force 
participation rates (LFPR), which in turn impact the pension systems. Despite this, research on LFPR forecasting 
remains limited, especially studies that account for both age and year effects. This study aims to address this gap 
through two main objectives. The first is to forecast the LFPR for Malaysian workers aged 50 to 64 by incorporating 
age and time effects using stochastic models, and the second is to estimate the expected length of retirement (ELR) 
based on the projected LFPR. The Lee-Carter and Cairns-Blake-Dowd (CBD) stochastic models are suggested, using 
a generalized linear model (GLM) approach with Poisson and binomial distributions to enhance model accuracy. 
Labor force data (2001–2021) were sourced from the Department of Statistics Malaysia (DOSM), and population 
data were obtained from the United Nations database. The results show that the Lee-Carter model outperforms the 
CBD model in terms of goodness-of-fit. Male LFPR is expected to remain stable from 2018 to 2047, while female 
LFPR is projected to increase significantly from 41% to 78%. This rise reflects changing social roles and delayed 
retirement among women. ELR projections also increase for both genders, driven by longer life expectancy and 
evolving labor force dynamics. 
 
Keywords: Labor market; stochastic model; labor force participation; retirement; older adults 

 
ABSTRAK 

 
Populasi global kini sedang mengalami proses penuaan yang ketara disebabkan oleh peningkatan jangka hayat dan 
penurunan kadar kesuburan. Perubahan demografi ini telah mengubah struktur umur tenaga kerja, dengan lebih 
ramai individu yang berusia terus bekerja sehingga umur persaraan. Akibatnya, kebanyakan negara termasuk 
Malaysia telah menunjukkan peningkatan dalam kadar penyertaan tenaga buruh (LFPR), yang seterusnya memberi 
kesan kepada sistem pencen. Namun, kajian mengenai peramalan LFPR masih terhad, khususnya kajian yang 
mengambil kira kedua-dua kesan umur dan tahun. Kajian ini bertujuan untuk menangani jurang tersebut melalui dua 
objektif utama. Objektif pertama adalah untuk meramal LFPR pekerja Malaysia yang berumur 50 hingga 64 tahun 
dengan mengambil kira kesan umur dan masa menggunakan model stokastik. Objektif kedua adalah untuk 
menganggar jangkaan tempoh persaraan (ELR) berdasarkan LFPR yang diramal. Model stokastik Lee-Carter dan 
Cairns-Blake-Dowd (CBD) dicadangkan dalam kajian ini, menggunakan pendekatan model linear teritlak (GLM) 
dengan taburan Poisson dan binomial bagi meningkatkan ketepatan model. Data tenaga buruh (2001–2021) 
diperoleh daripada Jabatan Perangkaan Malaysia (DOSM), manakala data populasi diperoleh daripada pangkalan 
data Pertubuhan Bangsa-Bangsa Bersatu. Hasil kajian menunjukkan bahawa model Lee-Carter memberikan prestasi 
yang lebih baik berbanding model CBD dari segi ukuran kebagusan-penyuaian. LFPR lelaki dijangka kekal stabil 
antara 2018 hingga 2047, manakala LFPR wanita dijangka meningkat secara ketara daripada 41% kepada 78%. 
Peningkatan ini mencerminkan perubahan peranan sosial dan kelewatan persaraan dalam kalangan wanita. Unjuran 
ELR juga meningkat bagi kedua-dua jantina, didorong oleh jangka hayat yang lebih panjang dan dinamik tenaga 
buruh yang berubah. 
 
Kata kunci: Pasaran buruh; model stokastik; penyertaan tenaga buruh; persaraan; warga tua 
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INTRODUCTION 
 

Malaysia gained independence in 1957 and has since experienced higher labor force participation 
rate (LFPR) across various age groups and genders due to socioeconomic advancements (Lim Bao 
Man et al., 2021; Jaapar et al., 2022). This outcome can be attributed to demographic shifts, aging 
population and policy reforms that promote prolonged employment participation (Goldin & Katz, 
2017). Despite these positive developments in labor force participation, early retirement decisions 
are influenced by increasing number of new entrants into the job market and biased views of 
productivity regarding older employees (Alcover & Topa, 2018; Buyens et al., 2009; Stynen et al., 
2017). Therefore, the complexities and uncertainties in retirement decisions make modern 
forecasting methods crucial for understanding LFPR outcomes, enabling more accurate 
predictions of future behavior of labor force (Queiroz & Ferreira, 2021). 

The structure of Malaysia’s pension system plays a significant role in shaping decisions 
for labor force participation, particularly among older workers. The coexistence of a defined 
contribution scheme (Employees Provident Fund, EPF) for private-sector employees and a defined 
benefit scheme for public servants creates different financial incentives for retirement timing. In 
the private sector, the ability to withdraw retirement savings at age 55 may encourage early exits 
from the labor market, potentially reducing LFPR among those aged 55 and above.  

The dynamics of Malaysia’s pension system and recent policy responses also have 
significant effects on LFPR, particularly among older workers. During the COVID-19 pandemic 
in 2020, the EPF allowed partial withdrawals through schemes such as i-Lestari, i-Sinar, i-Citra 
and 2022 Special Withdrawal, primarily affecting workers in their prime working age which are 
from 34 to 54 years (Jiton & Ibrahim, 2024). These emergency withdrawals, while offering short-
term relief, may affect long-term pension insufficiency, compelling individuals to remain in the 
workforce longer to rebuild retirement savings. 

In response to increased life expectancy and pension adequacy concerns, the government 
in Malaysia has raised the statutory retirement age from 55 to 60 in 2013. This shift also has a 
direct impact on the LFPR, particularly by encouraging extended labor force participation among 
older workers. Previous studies by Ibrahim (2012) and Hashim et al. (2019) highlight how 
economic factors such as retirement age affect LFPR trends. Their findings suggest that raising 
the retirement age can support the intergenerational balance of labor force and reduce the fiscal 
pressure on pension systems. Furthermore, government’s focus on the wellbeing and health status 
of male workers (Ajis et al., 2024) reflects efforts to sustain participation of older workers in the 
labor market, especially as health outcomes become a determinant of employability at older ages. 

In brief, Malaysia has experienced rising LFPR due to socioeconomic progress, 
demographic shifts and policy reforms. However, factors such as early retirement, pension system 
design, emergency withdrawals during the COVID-19 pandemic and statutory retirement age 
continue to influence participation, especially among older workers, highlighting the need for 
modern forecasting methods in LFPR studies.  

In terms of labor force dynamics, considerable attention has been given to gender gaps in 
the labor market. In Malaysia, gender disparity in the LFPR among the ageing workforce remains 
an issue. Although there has been a continuous increase in the LFPR across various age groups 
and genders (Dey, 2006; Kelle, 2020; Lyberaki, 2011; Yamamoto et al., 2017), this upward trend 
has not closed the participation gap between men and women. These disparities are reflective of 
broader socioeconomic changes that continue to reshape the structure of Malaysia’s labor market 
(Lim Bao Man et al., 2021; Jaapar et al., 2022). Despite women’s progress in educational 
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attainment, their participation in the workforce remains lower than that of men (Akhtar et al., 
2020). While recent studies indicate that women’s LFPRs are rising due to higher education levels, 
increased ICT access and reduced reliance on foreign labor (Cherif & Kouadri, 2021; Suhaida et 
al., 2013), structural barriers persist. In urban areas, many women have become family 
breadwinners, contributing substantially to household income. This shift coincides with 
demographic changes, such as delayed marriage and childbearing (Omar & Jaafar, 2024). 
However, many women still exit the labor market prematurely due to caregiving responsibilities, 
particularly for elderly family members (Dey, 2006; Kelle, 2020; Lyberaki, 2011; Yamamoto et 
al., 2017). The increasing need for eldercare further reinforces the reliance on women for informal 
care, leading to higher risks of burnout and reduced attachment of labor force (Hazira et al., 2025). 

Additionally, wage gaps and limited advancement opportunities for women further 
discourage long-term participation in the labor force (Kouam et al., 2023). These factors not only 
widen the gender gap in LFPR but may also reduce economic efficiency, as reflected in the lower 
GDP per capita, especially when female workers exit the labor force before reaching the statutory 
retirement age (Manansala et al., 2022). Although education remains a key driver of rising female 
participation (Abu Bakar & Abdullah, 2010), many women still face obstacles such as lack of job 
skills and unequal access to career progression. Such inequalities contribute to imbalances in the 
labor market, highlighting the need for policy reforms aligned with Sustainable Development Goal 
(SDG) 5, which is Gender Equality (Saha & Singh, 2025). 

In short, gender disparities in Malaysia remain a key concern in LFPR studies, as women 
continue to face structural barriers such as caregiving responsibilities, wage gaps and limited 
career advancement despite higher educational attainment and increased participation. These 
inequalities affect overall LFPR trends, particularly among older women.  

Recent studies have highlighted the trends and challenges in LFPR among older 
populations, particularly in Malaysia. For example, Chung et al. (2024) observed that Malaysia’s 
LFPR tends to decline near the statutory retirement age but later rises as some retirees re-enter the 
workforce. Financial strain remains a major factor compelling older individuals to return to work 
(Elhadary & Ahmed, 2024). Despite this trend, government policies frequently overlook age-
related health and disability conditions, leading to discrimination and restrictions in task allocation 
for older workers (Roehrig et al., 2013). In contrast, such financial pressures are less pronounced 
in OECD countries, where early retirement is often driven by government support and tax 
incentives favoring capital over labor (Beck & Park, 2018). 

To understand and anticipate these dynamics, several LFPR studies have suggested 
statistical models to project future conditions of labor market. For instance, Fallick & Pingle 
(2007) used cohort-based central moving averages, while Queiroz and Ferreira (2021) applied the 
Lee-Carter mortality model to the Brazilian LFPR data. Other approaches include ordinary least 
squares (OLS) regression with random walk forecasting (Higgins et al., 2019), parametric and non-
parametric methods (Kumar, 2006), and principal component analysis with bootstrapped 
confidence intervals (Fuchs et al., 2018). These studies reflect a growing interest in statistical 
forecasting of LFPR as a tool for labor market planning. 

Besides forecasting, LFPR studies have explored how demographic and economic factors 
influence policy outcomes. For examples, Wang et al. (2019) and Zhao et al. (2018) examined the 
sustainability of pension systems by linking LFPR to several economic measures such as GDP, 
dependency ratio and birth rate. Rahim and Yusoff (2024) measured Malaysia’s replacement ratio 
to assess adequacy of savings retirement. In other studies, rising dependency ratio have prompted 
discussions on adjustment of statutory retirement age to ensure economic stability and adequate 
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pension (Chomik et al., 2016; Felstead, 2010; Louria, 2005). Similarly, Yang et al. (2022) 
emphasized that dependency ratio is critical for refining pension policies and improving job 
prospects for older workers. 

In response to these complexities, our study proposes the Lee-Carter and Cairns-Blake-
Dowd (CBD) stochastic models, originally developed for mortality forecasting, to project LFPR 
in three decades ahead. The Lee-Carter model, with its clear interpretation of age- and year-specific 
components, is effective in capturing LFPR trends. The CBD model extends the Lee-Carter model, 
focusing on older populations by incorporating age and year effects, making it particularly suitable 
for analyzing LFPR in ageing workers. Applying these demographic models to LFPR studies 
enables more accurate age-specific projections.  

Based on the literature, the Lee-Carter and CBD models have been used to forecast 
mortality improvements in recent years. Hence, these models can also be used to predict the LFPR 
in aging populations in Malaysia. Although predicting the LFPR poses challenges (Berstein & 
Morales, 2021; Bozikas & Pitselis, 2019; Fuchs et al., 2018; Queiroz & Ferreira, 2021; Tuzemen 
& Van Zandweghe, 2018), stochastic forecasting techniques and region-specific adjustments can 
be used to address these issues (Blau & Kahn, 2017; Higgins et al., 2019). 

The Lee-Carter model is recognized for its simplicity and robustness in forecasting age-
specific mortality rates, and it has become a foundational tool in demographic and actuarial studies. 
Numerous researchers have proposed modifications to enhance its predictive accuracy and 
flexibility (Atance et al., 2020; Fajar & Fajariyanto, 2022; Liu et al., 2019; Odhiambo, 2023). The 
model has also been compared to neural networks (Schnürch & Korn, 2022) and ARIMA models 
(Shelleng et al., 2022), often outperforming them in terms of interpretability and stability. 
Comparative studies have also evaluated the Lee-Carter model alongside several stochastic models 
for explaining mortality improvements in populations in England, Wales and the United States 
(Cairns et al., 2011; Maccheroni & Nocito, 2017; Odhiambo, 2023; Renshaw & Haberman, 2006). 

An extension of the Lee-Carter model is the CBD model, which introduces age and year 
effects to better capture mortality patterns at older ages. The CBD model has shown better 
performance, especially in elderly age groups, when applied to mortality data in England and 
Wales (Cairns et al., 2011). Other studies have also confirmed the suitability of CBD model for 
older-age mortality modelling (Maccheroni & Nocito, 2017; Odhiambo et al., 2021).  

In the context of LFPR studies, Queiroz and Ferreira (2021) applied a singular value 
decomposition (SVD) approach in the Lee-Carter model to the LFPR data in Brazil. While SVD 
can efficiently capture LFPR patterns, it assumes homoscedastic error terms and is less effective 
at detecting outlier, limiting its ability to capture irregularities (Odhiambo et al., 2021). In 
response, Lee and Miller (2001) and Booth et al. (2002) proposed the Lee-Carter model using a 
Poisson GLM framework, which improves parameter estimation and model’s prediction. Renshaw 
and Haberman (2006) further improved the model by incorporating cohort effects, while Hyndman 
and Ullah (2007) extended the framework by including migration variables. 

In conclusion, while the Lee-Carter and CBD models have been used in mortality 
forecasting, and although preliminary efforts such as those by Queiroz and Ferreira (2021) have 
explored LFPR using the SVD approach, there is a lack of empirical studies that apply the Lee-
Carter and CBD models specifically to LFPR data, especially for age- and year-specific 
projections. Therefore, further analysis is needed to adapt these models for LFPR forecasting, to 
account for labor market complexities such as retirement timing, re-entry of older workers and 
demographic shifts. 
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The remainder of this study is outlined as follows: Section 2 describe the methodology, 
while Section 3 provides the results. The conclusions are provided in Section 4. 
 
 

METHODOLOGY 
 

DATA PREPARATION 
 

Our study suggests the Lee-Carter and CBD stochastic models to forecast LFPR in 2018 until 2047 
for both male and female workers in Malaysia. Both models have been applied in actuarial science 
area for forecasting mortality rates. Therefore, several modifications are required to forecast the 
LFPR.  

The data for this study is a secondary data obtained from official sources. The labor data is 
obtained from the Department of Statistics Malaysia (DOSM), while the population data is 
retrieved from the United Nations database. Further details on the dataset are available on websites 
(DOSM, 2021; United Nations, 2022). 

The data consists of labor counts and exposure (population), originally grouped into five-
year-age groups (50-54, 55-59, 60-64 years). This data is then transformed into a year-age matrix 
that serves as a model input. The cubic spline approximation is applied to produce a one-year-age 
data (Adejumo et al., 2019; Hou & Liu, 2013; Kim et al., 2015; Liggett & Salmon, 1981). The data 
is then divided into two datasets, training data (2001–2017) and testing data (2018–2021). The 
training data is used for fitting procedure to obtain parameter estimates, while the testing data is 
used for measuring the prediction error. We use the root mean squared error (RMSE) and the mean 
absolute percentage error (MAPE) for calculating the prediction error. 
 

LEE-CARTER MODEL 
 
The labor force participation rate (LFPR) is defined as the ratio of labor force to total population 
within the working-age group, typically between ages 15 until 64. The labor force includes 
individuals who are currently employed as well as those who are unemployed but actively seeking 
work. The LFPR at age x in year t refers to the ratio at age 𝑥 in calendar year 𝑡, and can be written 
as (Queiroz & Ferreira, 2021): 
 

           𝑚!" =
#!"
$!"

            (1) 
 

where 𝑚!" is the LFPR, 𝑙!" is the number of individuals who are employed or actively 
seeking employment, and 𝑛!" is the total population, all at age x in calendar year t. 

The Lee-Carter model assumes that the log-LFPR is represented by three components; the 
baseline of age-specific LFPR 𝑎!, the time-varying index of LFPR 𝑘" and the sensitivity of each 
age to changes in the time index 𝐵!. The mathematical expression for the Lee-Carter model is (Lee 
& Carter, 1992): 

 
𝑙𝑜𝑔(𝑚!") = 𝑎! + 𝐵!𝑘" + 𝜀!"           (2) 
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where 𝑚!" is the LFPR at age 𝑥 in year 𝑡, 𝑎! represents the average log-LFPR for age 𝑥, 
𝑘" is the time index, 𝐵! indicates the sensitivity of LFPR to changes in 𝑘" at age 𝑥, dan 𝜀!" is the 
error term. 

The parameter estimation of the Lee-Carter model is carried out using the Poisson 
generalized linear model (Poisson GLM) because the data consists of counts of individuals 
participating in the labor force, which are discrete in nature. Let 𝑙!" be the random variable 
representing the number of individuals who are employed or actively seeking work. Let 𝑛!" be the 
population, and 𝑚!" be the LFPR at age 𝑥 in calendar year 𝑡. The main assumption is that 𝑙!" 
follows a Poisson distribution with expected value 𝐸(𝑙!") = 𝜆!" = 𝑛!" . 𝑚!", where 𝑛!" is the 
exposure (population). Thus, equation (2) 	can be rewritten as: 

 
𝜆!" = 𝑛!" . exp	(𝑎! + 𝐵!𝑘").           (3) 

 
Therefore, the Poisson probability function for the Lee-Carter model is: 
 

        Pr(𝑙!") =
($!".'()	(+!,-!."))#!"'()(	 0$!".'()(+!,-!."))

#!"!
          (4) 

 
and the likelihood function for all ages 𝑥 and years 𝑡 is: 
 

          ℒ = ∏ ($!".'()	(+!,-!."))#!"'()(	 0$!".'()(+!,-!."))
#!"!!,"           (5) 

 
The log-likelihood function is: 
 
                    logℒ = ∑ [𝑙!"(log	 𝑛!" + 𝑎! + 𝐵!𝑘") − 𝑛!" exp(𝑎! + 𝐵!𝑘") − 𝑙𝑜𝑔(𝑙!"!)]!," .     (6) 

 
Parameter estimation is carried out using the maximum likelihood method, which involves 

choosing the parameters (𝑎! , 𝐵! , 𝑘") that maximize the log-likelihood in (6). An optimization 
technique is used to obtain the maximum likelihood estimates. The following constraints are 
imposed to ensure the uniqueness of the optimization solution: ∑ 𝑘"" = 0 dan ∑ 𝐵!! = 0. 
Therefore, the Poisson GLM approach makes the Lee-Carter model suitable for discrete data 
representing the number of labor force participants. 
 

FORECASTING OF LEE-CARTER MODEL 
 

The projection of LFPR for the next 30 years (2018-2047) requires the forecast of time index 𝑘". 
We modelled 𝑘" using ARIMA time series that follows a random walk with drift: 
 

𝑘" = 𝑘"03 + 𝛿 + 𝜉"           (7) 
 
where 𝛿 is a drift (or trend) term, and 𝜉" is normally distributed with error term, 𝜉" ∼ 𝑁(0, 𝜎45).  

Given the forecast values of 𝑘", the forecast of LFPR for the next 30 years (2018-2047) 
can be calculated. Let 𝑘J6,7 be the forecast values for the next 30 years, where 𝑟 is the last year 
available in the data (in our study 𝑟 = 17) and 𝑠 is the forecast year (in our study 𝑠 = 1,2, … ,30). 
The forecast of log-LFPR in year 𝑟 + 𝑠 is: 
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        𝑙𝑛	(𝑚R!,6,7) = 𝑎S! + 𝐵J!𝑘J6,7           (8) 

 
where 𝑎S! and 𝐵J! are the estimates of 𝑎! and 𝐵!. Therefore, the forecast of LFPR is: 
 

𝑚R!,6,7 = 𝑒+8!,-9!.9 $%&           (9) 
 

CAIRNS-BLAKE-DOWD (CBD) MODEL 
 

The CBD model is a stochastic model developed to analyze and forecast mortality rates, 
particularly for older populations. The CBD model is expressed in a logit form (Cairns et al., 2006): 
 

𝑙𝑜𝑔 U :!"
30:!"

V = 𝑘"
(3) + (𝑥 − �̅�)𝑘"

(5)         (10) 
 

where 𝑞!" represents the probability of individuals participating in the labor force at age 𝑥 in 
calendar year 𝑡 (LFPR), 𝑘"

(3) denotes the baseline level of LFPR in year 𝑡, 𝑘"
(5) captures how LFPR 

changes with age in year 𝑡, and �̅� is the average age. This structure enables the CBD model to 
separate time trends from age effects, providing a clearer picture of how LFPR evolves across 
different years and ages. 

To enable an equivalent comparison between the Lee-Carter model and the CBD model, 
the definition of LFPR in each model must be distinguished. For the Lee-Carter model, the LFPR 
in equation (1) is a central LFPR given by  𝑚!" =

#!"
$!"

, where 𝑚!" is the central LFPR, 𝑙!" is the 
number of individuals employed or actively seeking employment, and 𝑛!" is the population at age 
𝑥 throughout calendar year 𝑡. 

For the CBD model, LFPR is defined as a probability: 
 

      𝑞!" =
#!"
$!"
'           (11) 

 
where 𝑛!";  is the population at age 𝑥 at the beginning of year 𝑡. The main difference is that 

𝑛!" in the Lee-Carter model represents central exposure throughout year 𝑡, while 𝑛!";  in the CBD 
model is the exposure at the beginning of the year. Therefore, 𝑛!"; > 𝑛!", and can be approximated 
as (Villegas et al., 2018): 

 
𝑛!"; ≈ 𝑛!" +

3
5
𝑙!"           (12) 

 
Parameter estimation for the CBD model is carried out using binomial GLM because the 

data represent probabilities. For LFPR data, the number of individuals participating in the labor 
force 𝑙!" is assumed to follow a binomial distribution with sample size 𝑛!";  and probability 𝑞!", 
that is 𝑙!"~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛!"; , 𝑞!"). Therefore, the binomial probability function for CBD model is: 

 

        Pr(𝑙!") = ^𝑛!"
;

𝑙!"
_ 𝑞!"#!"(1 − 𝑞!")$!"

' 0#!"        (13) 
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and the likelihood function for all ages 𝑥 and years 𝑡 is: 
 

         ℒ = ∏ `^𝑛!"
;

𝑙!"
_ 𝑞!"#!"(1 − 𝑞!")$!"

' 0#!"a!," .        (14) 

 
Next, the simplified log-likelihood function is: 

 
Logℒ = ∑ 𝑙!"!," log(𝑞!") + (𝑛!"; − 𝑙!")𝑙𝑜𝑔(1 − 𝑞!").       (15) 

 
Equation 𝑞!" can be obtained from equation (10): 

 

      𝑞!" =
<("

(*)%(!,!-)("
(.)

3,<("
(*)%(!,!-)("

(.) .         (16)  

 
Therefore, the log-likelihood function, in its simplified form, becomes: 

 
logℒ = ∑ c𝑙!"U𝑘"

(3) + (𝑥 − �̅�)𝑘"
(5)V − 𝑛!"; log U1 + 𝑒."

(*),(!0!̅)."
(.)
Vd!," .      (17) 

 
The parameter estimation is carried out using the maximum likelihood method, by selecting 

the parameters U𝑘"
(3), 𝑘"

(5)V that maximize the log-likelihood in equation (17). Optimization 
techniques are used to obtain the maximum likelihood estimates. 
 

FORECASTING OF CBD MODEL 

 
The forecast of time indices 𝑘"

(3) and 𝑘"
(5) for CBD model can be obtained using ARIMA time 

series that follows a bivariate random walk with drift:  
 

 𝒌𝒕 = 𝒌𝒕0𝟏 + 𝜹 + 𝝃𝒕         (18) 
 

where 𝒌𝒕 = h
𝑘"
(3)

𝑘"
(5)i is the vector of time index parameters, 𝜹 = ^𝛿

(3)

𝛿(5)
_ is the vector of drift terms, 

and  𝝃𝒕 = h
𝜉"
(3)

𝜉"
(5)i is the vector of error terms that follow a bivariate normal with mean zero and 

covariance matrix 𝚺, 𝝃𝒕 ∼ 𝑁(0, 𝚺). 
Given the forecast values of 𝑘"

(3) and 𝑘"
(5), the forecast of LFPRs for the next 30 years 

(2018-2047) can be calculated. Let 𝑘J6,7
(3)  and 𝑘J6,7

(5)  be the forecast values for the next 30 years, 
where 𝑟 is the last year available in the data (in our study 𝑟 = 17), and 𝑠 is the forecast year (in 
our study 𝑠 = 1,2, … ,30). The forecast of logit-LFPR in year 𝑟 + 𝑠 is: 
 

            𝑙𝑜𝑔 ^ :8!,$%&
30:8!,$%&

_ = 𝑘J6,7
(3) + (𝑥 − �̅�)	𝑘J6,7

(5) 	        (19) 
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Therefore, the forecast of LFPR is: 
 

           𝑞S!,6,7 =
<(0$%&

(*) %(!,!-)	(0$%&
(.)

3,<(0$%&
(*) %(!,!-)	(0$%&

(.)          (20) 

 
 

EXPECTED LENGTH OF RETIREMENT (ELR) 
 

The ELR refers to the average number of years an individual is expected to spend in retirement, 
from the retirement year until the death year. It is a key measure in pension planning and actuarial 
analysis, especially in an ageing population. The ELR can be estimated as the weighted average 
of life expectancy of a worker at each retirement age (Lee, 2001). Assuming that the earliest 
working age is at age 20, the ELR is: 
 
    𝐸𝐿𝑅 = ∑ 𝑆!𝑇!@A

!B5; 𝛾![1 − (0.5 × 𝑞!	)] U
<!,<!%*

5
V                          (21) 

 
where 𝑆! is the probability of surviving to age 𝑥, 𝑇! is the probability of remaining in the labor 
force until age 𝑥, 𝛾! is the likelihood of retiring at age 𝑥 if the worker is still employed at age 𝑥, 
𝑞! is the probability of death in the age interval (𝑥, 𝑥 + 1), and 𝑒! and 𝑒!,3 are the life expectancies 
at age 𝑥 and 𝑥 + 1 respectively. The probability of retiring at age 𝑥 until 𝑥 + 1 is 
𝑆!𝑇!𝛾![1 − (0.5 × 𝑞!)]. Therefore, the expected length of retirement can be obtained by 
aggregating 𝑆!𝑇!𝛾![1 − (0.5 × 𝑞!)]

(<!,<!%*)
5

 at each age. 
Equation (21) can be simplified by assuming that the earliest retirement age is 50 (Crafts, 

2022). Therefore, the ELR is: 
 
𝐸𝐿𝑅 = 𝜌5;0C; ∑ 𝑆!𝑇!@A

!BC; 𝛾![1 − (0.5 × 𝑞!	)] U
<!,<!%*

5
V                        (22) 

 
where 𝜌5;0C;	is the probability of surviving from age 𝑥 = 20 until age 𝑥 = 50. In our study, (𝑇!, 
𝛾!) are obtained from the forecasted LFPR, while the survivorship and mortality estimates (𝑆!, 𝑞!, 
𝑒!) are obtained from the projections of the United Nations. Therefore, we need the forecast values 
for each age and year to calculate the ELR. Figure 1 shows a simple framework to forecast the 
LFPR and to project the ELR. 
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FIGURE 1. Framework to forecast LFPR and to project ELR 
 
 

RESULTS AND DISCUSSION 
 

RESULTS FOR LEE-CARTER MODEL 
 
Figure 2 shows the estimated parameters of the Lee-Carter model for male and female LFPR aged 
50 to 64, fitted to the training data from 2001 to 2017.  
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(b) 

 
FIGURE 2. Parameter estimates of Lee-Carter model (a) male LFPR (b) female LFPR 

 
Parameter 𝑎! represents the baseline level of LFPR by age. For male LFPR (Figure 2(a)), 

the values of 𝑎! gradually decrease from age 50 to 64, indicating that male participations are 
highest at younger ages and decline with age. For female LFPR (Figure 2(b)), 𝑎! exhibits a U-
shaped pattern, declining until age 59 and then rising again after age 60. This suggests that women 
tend to exit the labor force between ages 50 and 59, possibly due to early retirement or family 
responsibilities, but some re-enter the workforce after age 60, possibly due to financial constraints 
or insufficient pension funds.  

Parameter 𝑘" reflects changes in the LFPR across all ages over time. For male LFPR, the 
value of 𝑘" fluctuated slightly but remained around zero between 2000 to 2017, indicating stability 
in participation rates. In contrast, for female LFPR, there is a sharp increase in 𝑘" after 2011, 
suggesting a rise in labor force participation, likely due to policy changes, economic necessity or 
evolving social norms. 

Parameter 𝐵! represents the sensitivity of LFPR to changes in 𝑘" across different ages. For 
males, 𝐵! peaked between ages 55 to 57, indicating that this age group is the most responsive to 
economic or social policy changes. For females, the pattern is similar but with lower values, 
suggesting that women are less responsive to temporal changes compared to men across all age 
groups. 

In summary, male workers show a more stable LFPR pattern over time with a gradual 
decline with age. Female workers, on the other hand, demonstrate more dynamic participation over 
time, with a significant increase after 2011. This indicates that although male workers still 
dominate the labor force, female participation is rising and becoming increasingly significant in 
Malaysia’s labor market. 
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Figure 3 shows the forecast of 𝑘" parameter from the Lee-Carter model for male and female 
LFPR age 50 to 64 from 2001 to 2047. A comparison of the 𝑘" forecasts between male and female 
LFPR reveals several differences. For male LFPR (Figure 3(a)), the 𝑘" values remain almost flat 
after 2020, indicating that the male LFPR is expected to remain relatively unchanged and stable 
over the next three decades. This may reflect a mature male labor market, the effects of male 
population aging, or a tendency toward earlier retirement. 
 

 

  
(a)                                                                       (b) 

 
FIGURE 3. Forecasted 𝑘! of Lee-Carter model (a) male LFPR (b) female LFPR 

 
In contrast, for female LFPR (Figure 3(b)), the 𝑘" values increase significantly after 2020 

through to 2047. This upward trend reflects the expectation that female labor force participation 
will continue to grow. Contributing factors may include structural economic changes, rising levels 
of female education, more women-friendly policies (such as childcare support and flexible work 
arrangements) and increasing economic demands that encourage women to remain in the 
workforce. Additionally, the confidence intervals in both male and female 𝑘" graphs show growing 
uncertainty over time. 

Overall, the forecasts suggest that the future of Malaysia’s labor market may see a growing 
contribution from female workers, while male labor force participation remains at current levels. 
This result also agrees with studies by Queiroz and Ferreira (2021) who found that female 
participation has increased. 

 
RESULTS FOR CBD MODEL 

 
Figure 4 displays the parameter estimates from the CBD model fitted to LFPR data for ages 50 to 
64 from 2001 to 2017, with (a) representing male LFPR and (b) representing female LFPR. The 
plotted parameters are 𝑘"

(3), which represents the overall level of LFPR each year, and 𝑘"
(5), which 

reflects how LFPR varies by age over time. 
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(a)                                                         (b) 

 
FIGURE 4. Parameter estimates of CBD model (a) male LFPR (b) female LFPR 

 
Figure 4(a), which illustrates male LFPR, shows that the trend of 𝑘"

(3) fluctuated 
moderately between 2001 and 2017, remaining within a narrow range. This indicates that the 
overall male LFPR remains relatively stable throughout the period. Similarly, the parameter 𝑘"

(5) 
shows minor fluctuations without a clear upward or downward trend, suggesting that age 
differences in male LFPR remains consistent over time. In summary, male LFPR appears stable in 
both overall level and age-specific variation, reflecting a persistently high level of engagement 
among older men in the labor market during the study period. 

Figure 4(b) shows a different pattern for female LFPR. The parameter 𝑘"
(3) rises sharply 

after 2010, indicating a clear upward trend in the overall female LFPR. This trend is likely driven 
by improvements in educational attainment, policy changes that support female employment, and 
evolving social norms related to women’s roles in the workforce. Meanwhile, 𝑘"

(5) exhibits a 
consistent downward trend. In other words, the LFPR gap between younger and older women is 
narrowing, suggesting that more older women are remaining or returning to the labor force. 

Overall, Figure 4 highlights a contrast between male and female LFPR patterns. Male 
LFPR remains stable across age and time, while female LFPR shows a marked increase, 
particularly among older age groups. This result also agrees with studies by Queiroz and Ferreira 
(2021) who observed a constant increase in labor force for women. 

Figure 5 shows the forecast values of 𝑘"
(3) and 𝑘"

(5) for male and female LFPR from CBD 
model in 2001 until 2047. For male LFPR, the forecast of 𝑘"

(3) shows a gradual downward trend 
after 2020. This suggests that male LFPR is expected to decline slowly over time. However, the 
projected values remain close to zero, indicating that the anticipated decline is moderate. The 
parameter 𝑘"

(5) also exhibits a slight downward trend, suggesting that the participation gap between 
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younger and older males may slightly widen. This means that older male workers are expected to 
gradually reduce their involvement in the labor force compared to the younger age groups. 

 
 

  
(a)                                                                            (b) 

  
FIGURE 5. Forecasted 𝑘! of CBD model (a) male LFPR (b) female LFPR 

 
In contrast, the forecast of 𝑘"

(3) for female LFPR shows a moderate upward trend, especially 
after 2020. This indicates an overall increase in female LFPR, consistent with past trends showing 
rising participation due to changes in education, social roles and economic needs. Although the 
increase is gradual, the upward trend is clear and reflects the growing involvement of women in 
the labor market over the long term. The forecast of 𝑘"

(5) also shows a continuous downward trend, 
suggesting that the participation gap between younger and older women is expected to narrow. In 
other words, more older women are expected to remain in or return to the labor force, possibly due 
to longer working periods, delayed retirement age or financial necessity. 

Overall, Figure 5 indicates that male LFPR is expected to gradually decline in the coming 
decades, while female LFPR is projected to increase, thereby narrowing the gender gap. In 
addition, the age-specific pattern is also shifting, with more older women expected to remain in 
the workforce for a longer period. Therefore, it is important to consider gender-specific health and 
longevity factors when designing labor market policies, retirement planning and pension systems. 
This approach helps in better understanding the drivers of LFPR and projecting its future trends 
(Cairns et al., 2006; Lee & Carter, 1992). 
 

MODEL SELECTION 
 

The training dataset (2001-2017) is used to estimate the parameters, while the testing dataset 
(2018-2021) is utilized to calculate the prediction errors (RMSE and MAPE). We select the best 
model by comparing the Akaike Information Criterion (AIC), Bayesian Information Criterion 
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(BIC), deviance, RMSE and MAPE from both Lee-Carter and CBD models. The AIC, BIC and 
deviance are obtained from the in-sample results (using the training dataset), whereas the RMSE 
and MAPE are calculated from the out-of-sample results (using the testing dataset). Table 1 
provides the AIC, BIC, deviance, RMSE and MAPE for both male and female LFPRs.  
 

TABLE 1. Summary of in- and out-of-samples measures 
 

Model   Male Female 
Lee-Carter AIC 14,220  10,749 

BIC 14,380 10,908 
Deviance 10,838  7,579 
RMSE 0.2415 0.3712 
MAPE 0.3407 0.4287 

CBD AIC 39,752 149,261 
BIC 39,873 149,382 
Deviance 36,572 146,205 
RMSE 0.2167 0.3010 
MAPE 1.4183 1.1886 

 
The AIC, BIC and deviance for the Lee-Carter model are generally smaller than those for 

the CBD model, suggesting a better fit to the data. Additionally, the Lee-Carter has significantly 
lower MAPE than the CBD model, indicating higher accuracy in the LFPR forecasts. These results 
suggest that the Lee-Carter model performs better than the CBD model. 
 

LABOR FORCE PARTICIPATION RATE (2001-2047) 
 
Table 2 and Figure 6 provide the LFPR forecasts from the Lee-Carter model for male and female 
workers at age 50, 55 and 60 in 2001 until 2047. The male LFPRs remain high and consistent 
throughout the projection period. In contrast, the female LFPRs show a noticeable rise, indicating 
that more women are staying in the workforce at ages 50 to 60. This trend may be attributed to 
societal shifts, economic needs, or government interventions aimed at increasing the female 
LFPRs. 
 

TABLE 2. LFPR forecasts for male and female workers at age 50, 55 and 60 
 

Year LFPR age 50 LFPR age 55 LFPR age 60 
 Male Female Male Female Male Female 

2001 0.93 0.41 0.74 0.29 0.59 0.21 
2007 0.92 0.44 0.71 0.28 0.54 0.20 
2017 0.92 0.53 0.77 0.39 0.51 0.22 
2027 0.93 0.60 0.76 0.46 0.55 0.26 
2037 0.93 0.68 0.76 0.55 0.55 0.29 
2047 0.93 0.78 0.76 0.66 0.55 0.33 
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(a)                                                               (b) 

 
                                             (c) 

 
FIGURE 6. LFPR forecasts for male and female workers age (a) 50, (b) 55 (c) 60 

 
EXPECTED LENGTH OF RETIREMENT (2001-2047) 

 
The ELR (in years) is projected using equation (22), assuming that the earliest age to work is 20 
and the earliest age to retire is 50. Table 3 provides the projected ELR for male and female workers 
in 2001 until 2047. The results show increasing ELRs for both genders in the projection period. 
Additionally, male workers are forecasted to have longer retirement durations compared to female 
workers. However, male ELR increases from 15.19 years in 2001 to 20.05 years in 2047, while 
the female ELR rises at a much faster rate, starting from 7.65 years in 2001 and reaching 19.35 
years in 2047. 

 
TABLE 3. Projected ELR for male and female workers 

 
Year ELR (years) 

Male Female 
2001 15.19 7.65 
2007 15.76 7.42 
2017 16.36 8.95 
2027 17.39 12.85 
2037 18.67 15.83 
2047 20.05 19.37 

 

https://doi.org/10.17576/akad-2025-9502-13


Akademika 95(2), 2025: 220-243 
https://doi.org/10.17576/akad-2025-9502-13 

 236 

Since the male LFPR has slower growth than the female LFPR, the higher ELR for male 
workers may be attributed mainly to the increase in life expectancy. As for female workers, the 
substantial rise in both LFPR and ELR suggest that the growth in life expectancy surpasses the 
increase in the LFPR. This outcome suggests a significant shift in the Malaysian women’s 
workforce and their retirement planning. 

Life expectancy and ELR are the two main factors that should be considered when planning 
for employment and retirement. Figure 7 illustrates the projected ELR (black and blue lines) and 
the forecasted life expectancy at age of 50 (EL50, red and green lines) for both male and female 
workers in 2001 until 2047. 

 
FIGURE 7. Life expectancy at age 50 (EL50) and ELR 

 
Several key observations can be made. Firstly, the life expectancy at age 50 (EL50) for 

both males (red line) and females (green line) increases steadily over time. Secondly, the ELR for 
both genders show a steady increase over time. Notably, the ELR for female workers (blue line) 
rises more sharply than males (black line), suggesting that women will spend a growing portion of 
their post-50 years in retirement. This trend may be driven by improvements in life expectancy 
and rising LFPR. 
 

RESIDUAL ANALYSIS 
 
Figure 8 displays a residual heatmap showing the goodness-of-fit of the Lee-Carter and CBD 
models by varying colour intensity. The colour intensity represents residual values, with red and 
blue shades indicating over- and under-estimation respectively, and lighter colours indicating 
smaller residuals (better fit).  

The residuals for Lee-Carter male in Figure 8(a) are generally lighter and more evenly 
distributed compared to the CBD model in Figure 8(c), indicating a better overall fit. Minor 
underestimations occur around certain ages. The Lee-Carter female residuals in Figure 8(b) also 
performs better than the CBD in Figure 8(d), with smoother residual patterns and fewer deviations. 
A noticeable pattern of underestimation is also visible in several age groups. 
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In summary, the Lee-Carter model demonstrates a more stable and consistent fit for both 
male and female LFPR data across age and time. The heatmaps visually support the conclusion 
that the Lee-Carter model has better goodness-of-fit for the Malaysian LFPR data during the study 
period. 
 

    

  
(a) (b)

  
(c) (d)

 
FIGURE 8. Residual heatmap for fitted LFPR (a) Lee-Carter male (b) Lee-Carter female (c) CBD male (d) CBD female 

 
 

CONCLUSION 
 

This study suggested stochastic modeling to forecast the LFPR of older workers in Malaysia, 
specifically focusing on the age group 50 to 64. Using the Lee-Carter and CBD models within a 
GLM framework, our study integrated Poisson and binomial distributions to account for the 
discrete and probabilistic nature of LFPR data. These models, traditionally used for mortality 
forecasting, are adapted to capture age-specific and time-related dynamics in labor market 
participation. The labor force data is obtained from the Department of Statistics Malaysia (DOSM) 
and population are sourced from the United Nations database, covering the years 2001 until 2021. 

The results show that the parameter estimates from the LC model reveal notable age and 
gender-specific patterns. For male workers, the age-specific parameter declines steadily with age, 
indicating reduced participation as age increases. In contrast, the female LFPR shows a U-shaped 
pattern, suggesting that many women exit the workforce in their 50s, possibly due to caregiving 
or early retirement, and some re-enter the labor force post-60, potentially due to financial necessity. 
The time-varying parameter illustrates stable trends for men from 2001 to 2017, reflecting steady 
male participation. However, for women, the parameter increases significantly after 2011, 
indicating rising LFPR likely driven by socioeconomic shifts, policy reforms and changing gender 
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roles. The sensitivity parameter suggests that males aged 55–57 are most responsive to temporal 
changes, while females are less responsive but follow similar age patterns. 

Forecasting results for 2018 until 2047 indicate that male LFPRs are expected to remain 
stable, whereas female LFPRs are projected to rise significantly, from 41% to 78%, highlighting a 
narrowing gender gap in labor market participation. This trend reflects increasing female 
integration into the workforce, influenced by delayed retirement, improved education and evolving 
family roles. 

In terms of model performance, the residual diagnostics confirm that the LC model offers 
a better fit than the CBD model for both men and women, affirming its suitability for modeling 
age-specific LFPR. Additionally, projections of ELR reveal a growing retirement duration for both 
genders, driven by increasing life expectancy and shifts in labor force dynamics. These findings 
emphasize the importance of accounting for demographic and gender-based differences in labor 
market forecasts and suggest the need for adaptive pension policies to ensure long-term 
sustainability. 

Despite these results, several limitations merit discussion. First, while the models account 
for age and period effects, cohort effects are not explicitly modelled, potentially limiting the ability 
to capture generational influences on labor participation behavior. Second, the study focuses solely 
on Malaysia, thus, generalization to other demographic or institutional contexts is limited. 

Future research could extend this work by incorporating additional covariates, such as 
health status, education and employment trends, into the forecasting framework. Moreover, hybrid 
models that combine stochastic approaches with machine learning techniques may enhance 
predictive performance and capture nonlinear dynamics. Comparative studies across countries 
with varying pension systems and demographic profiles would also be valuable in assessing the 
model robustness and comparing the LFPR forecasts. 

In summary, this study highlights the used of stochastic mortality models in labor market 
forecasting and the importance of gender and age in managing the effects of an aging workforce. 
These insights are vital for ensuring the sustainability of pension systems and aligning labor market 
strategies with demographic realities. 
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