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A Parallel New High Order Iterative Algorithm
on Shared Memory Multiprocessors
Parallel Computer

MOHAMED OTHMAN & ABDUL RAHMAN ABDULLAH

ABSTRACT

A new fast high-order points iterative algorithm of O(h*) applied to linear
systems arising from discretization of 2D Poisson problem was recently
introduced by the writers. This algorithm shows drastic reduction in execu-
tion time as compared to the standard high-order points iterative algorithm.
In this paper, the parallel implementation of the algorithm with optimal
strategy on shared memory multiprocessors (SMP) was presented and dis-
cussed. The numerical results of the test problem are included.

ABSTRAK

Satu algoritma lelaran titik bertertib tinggi baru dan terpantas O(h?) yang
diaplikasikan kepada sistem linear hasil daripada pengdiskretan masalah
Poisson 2D telah diperkenalkan oleh penulis. Algoritma ini telah menunjukkan
penurunan masa pelaksanaan yang drastik berbandingkan dengan algoritma
lelaran titik bertertib tinggi piawai. Dalam makalah ini, implementasi
algoritma selari tersebut dengan strategi optima pada multipemproses ingatan
berkongsi (SMP) dibentangkan dan dibincangkan. Hasil berangka daripada
masalah ujian akan disertakan.

INTRODUCTION

The parallel high order iterative algorithm which incorporates the standard
high order scheme which is also known as compact high order scheme for
solving a large and sparse linear system has been implemented successfully
by many researchers. One of the most outstanding parallel algorithm that uses
the scheme was proposed by Spotz, et al. (1998). Theoretically, the standard
high order scheme of O(h') was derived by Coltaz (1960). Based on the
scheme, several experiments were carried out and the results obtained have
shown that it has higher accuracy, see Gupta (1984). Othman et al. (2001)
derived a new scheme, which is known as a new fast high order scheme for



solving the 2D Poisson equation. From the experimental results, they found
that the new scheme is shown to have drastic improvement in execution time
as compared to the standard high order scheme.

DERIVATION OF A NEW HIGH ORDER SCHEME

Let us consider the 2D Poisson equation as our model problem, which can be
represented mathematically as:

u, +u = fixy), (xy) € L, (1

subject to the Dirichlet boundary conditions and satisfying the exact solution,
ulx,y) = g(x,y) for (x,y) € Q" The discretization resulted in a large and sparse
linear system. Hence, the iterative method is considered as suitable approach
for solving such a linear system.

Consider Equation (1) on a unit square, £ with the grid spacing / in
both directions, x, = x, + ih and y, =y, + th for all i,j = 0.1,...,n. Assume that
u, . =u_ due to the continuity of u(x.y) on Q".

~ Based on the cross orientation approximation and central difference
formula, the displacements i and j which correspond with Ax and Ay
respectively changes to .,E};.. Equation (2) can be approximated at any points
(x.y) using the finite difference formula and yields:

f"J+I\,;+l + ua’-luh-l + “H—i,;vl + “rvl,,r-l + 4“ = 2h (H L “n}.’,r (2)
h' .
+ ? {a (SRR + 6“.1'.!’“ \\ AL }f J + 0( h

Equation (2) is known as a rotated five points stencil of O(h’) provided
the second and third terms on the right-hand side are ignored. Since the
accuracy of the stencil is not good, it is possible to derive the higher order
of accuracy. Again the finite difference formula is used to derive the high
order approximation. By taking width 2A, approximation to Equation (1) at
the point {x',_\,;) takes the form,

o, B b+ Al = Ah(u + u), +

41:*

— (u ), + O(h°). (3)

LERNY \\\\

Multiplying Equation (2) by 4 and adding it with Equation (3), we have:

oy, + Wy U +4(u +u + u +u }—201;,_’5

i+2 <2 i+l il gl -l i=hy=1

[2}12(1: + ) A Zh“(u e Bl dh'(u, ) + O(h"). (4)
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Double derivatives of Equation (1) with respect to x and y, we obtain:
(u.u\'.- * u.r.\'_\-_\'}a.,r = (f;.n-)r._; ! (5}
and

(i, 0.0, = (6)

respectively. Multiply both Equations (5) and (6) by 2h* and add, we can
write Equation (4) as,

7 i+ i=1 g+l -l =141

~20u, = 1212 f, + 20F, + ), + OCH).

Uy U o U e A U ) (N

For higher order approximation, replace second term on the right-hand side
of Equation (7) by B(f, ., + [, tfouss oo =4 and ignore the third
term, we obtain:

+ Hu + u + U +u ) (8)

u 2 + “- + uf.lr-E tu i+l f=1 4+ i+l -l =11

P2

where F‘_} = (&f, +f;+1.,,+| g b, = 4af ). Equation (8) is called
a new high order scheme and its accuracy is O(h"). Details of the scheme and
their computational molecule can be obtained in Othman et al. (2001). The
compact high order scheme and their derivation were shown in details in
Collatz (1960), Gupta (1984) and Sportz (1998).
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FIGURES 1. (a) and (b) show the 4C ordering strategy as indicated 7'\, T, ..., T, and
the remaining mesh points in ", respectively for the parallel new high
order algorithm with n = 10.
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PARALLEL STRATEGY AND ITS IMPLEMENTATION

Assume the Q" is large with n = 2(i+1/) for any integer i=/,2,.... Several
ordering strategies of parallelizing all the points iterative algorithms have
been studied and investigated (see Abdullah er al. 1996). However, only the
optimal strategy is described in the following section.

A PARALLEL NEW HIGH ORDER ALGORITHM

Let the Q" be discretized and labeled into three different types of mesh
points, &, o and [] (see Figure la). All the o points (or tasks T) are allocated
to the available processors in four colors (4C) strategy, white (w), yellow (y),
green (g) and red (r). Note that all points of type © will be executed first in
parallel by using the rotated five point scheme with the natural strategy.

Applying this strategy to Equation (8) in turn with such strategy to each
task 7' leads to the following linear system:

D, E F Ilullf,

E. D, F J|u]|f

F, F' D, Glu,| |f (9
Jp J' G D fu ]l L]

where D, the blocks D, are diagonal and hence invertible. Thus, the S.O.R
relaxation technique to Equation (9) will result to:

{H“ éu{” + @, D fu “} .l"ﬂ“] JHE.“].
HEIHI) [.k] +, D f‘ : {i+lj FHIE;J.-] —J“EH)

(10)

[1+Ij (: {“+&J D I(f, j [£+!j+ :w]) Gu},")

“HJ— +£OD = J’T £+!+”J.+l)) GT'uLU)

where = (1 - @) and is the acceleration factor. Since the evaluation of each
task 7, within each group is independent of one another, we can evaluate
Equation (10) in parallel in the following order:

)y uEh” > u

(k)
w o

kel
> ul.
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In other words, each iteration is split into four sweeps in parallel
separated by a synchronizing call. This to ensure the updates in &" sweep are
completed before the updates in the (k+/)" sweep begin. After an iteration
is completed, a local convergence check will be made by each processor,
followed by a global convergence check. The iteration is terminated only if
local convergence is achieved, which indicates that each processor has
achieved local convergence. After the global convergence is attainted, the
solution of the remaining mesh points i.e. points of type [] will be evaluated
directly in parallel using the standard five points formula by assigning each
row to a different processor at a time.

RESULTS AND PERFORMANCE EVALUATIONS

All the methods were applied to the following model of problem which was
defined in unit Q" and described as u + u = (x* + y*) e". The problem is
subjected to the Dirichlet boundary condition and satisfying the exact solu-
tion u(x,y) = e“,(x,y) C Q" as shown in Figure 2.

FIGURE 2. The exact solution of the problem in a unit £

Throughout the experiment, a tolerance of the £ = 107" in the local
convergence test was used. The experimental values of @ were obtained
within #0.01 by running the program for different values of @ and choosing
the one(s) that gave the minimum number of iterations. The experiments

57



were carried out on SMP parallel computer with several mesh sizes n as 36,
50, 70 and 100.

Table 1 shows the optimum value of @, number of iterations, strategies
and maximum errors. Table 2 shows the execution time and speedup for all
the parallel high order iterative algorithms. The execution time, efficiency
and temporal performance of all the parallel points iterative algorithms were
plotted in Figures 3, 4 and 5, respectively.

TABLE 1. Acceleration factor @, number of iteration, strategy and maximum error
of all the parallel high order iterative algorithms

n  Algorithm Acc. Factor, @ No. of Iteration Strategy Max. Errors
36  Standard 1.84 146 4C 4.55x10"
New 177 106 4C 1.33x 10
50  Standard 1.88 201 4C 1.24x10"
New 1.83 160 4C 3.24x107
70 Standard 1.91 276 4C 4.39x10"
New 1.87 235 4C 8.85x10*
100 Standard 1.94 406 4C L12x10°1
New 1.90 359 4ac 2:19x10%
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FIGURE 3. The execution time vs. no. of processors of all the
parallel high order iterative algorithms n=100



TABLE 2. The numerical results of all the parallel high
order iterative algorithms

No. of Processors

Parallel High Order Algorithms

Standard New

Time Speedup Time Speedup

| 20.8174 1.0000 7.6300 1.0000

2 11.3899 1.8277 4.2367 1.8009

36 3 8.3684 2.4876 3.1235 2.4427
4 6.4995 3.2029 24777 3.0794

5 5.3320 3.9042 2.0345 3.7502

| 55.8694 1.0000 9.5020 1.0000

2 29.9873 1.8631 10.6912 1.8421

50 3 20.7415 2.6736 7.6046 2.5645
4 16,7213 3.3412 59125 3.2984

5 13.6320 4.0984 4.8893 3.9887

1 156.6552 1.0000 65.9847 1.0000

2 82.6981 1.8943 35.0348 1.8834

70 3 56.1729 27888 24.8417 2.6562
4 43.7951 3.5770 18.8630 3.4981

5 36.5112 4.2906 15.8445 4.1045

1 473.8377 1.0000 212.3990 1.0000

2 241.7539 1.9600 111.4662 1.9055

100 3 171.1779 2.7681 76.8834 2.7626
4 130.0251 3.6442 60.6213 3.5037

5 108.0489 4.3854 49.6224 4.2803

Efficizns
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FIGURE 4. An Efficiency vs. No. of Processors of All the Parallel
High Order Iterative Algorithms n=100
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FIGURE 5. Temporal performance vs. no. of processors of all
the parallel high order iterative algorithms n=100

CONCLUSION

The results obtained show that the parallel new high order algorithm with 4C
strategy is faster than the parallel standard high order algorithm for any
number of processors (Tables | and 2). It is also indicated in the graphs of
execution time, efficiency, temporal performance versus no. of processors as
stated in Figures 3, 4, 5, respectively. This is due to the fact that the mesh
points involved in the iteration process are less than the other algorithm.

It can be concluded that the parallel new high order algorithm is the most
superior and effective method among the two algorithms particularly for
solving 2D Poisson problem. In the future, the algorithm will be implemented
on the SMP cluster architecture.
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