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‘ABSTRACT

Measures of similarity play an important role in modern systems for textual
information retrieval. This paper reviews the use of such measures for
processing databases of chemical structures, which are of increasing
importance in the discovery of new pharmaceuticals. Methods are described
for chemical similarity searching, for clustering databases of chemical
substances, and for selecting structurally diverse database subsets.
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INTRODUCTION

The calculation of similarity lies at the heart of many of the tools comprising
modern systems for text-based information retrieval. Most obviously, the
ranked-output retrieval facilities in current Web search engines are based on
calculating the similarity between a user’s query and each of the Web pages
that have been indexed by an engine’s spider system. The similarity here is
based on the number of words in common to the query and page texts, using
weighting and normalisation methods that have now been studied for over
three decades (see, e.g., Sparck Jones, 2000; Spark Jones and Willett, 1997;
van Rijsbergen, 1979). Similar measures are used to calculate the inter-
document similarities that lie at the heart of methods for automatic document
classification (Jardine and van Rijsbergen, 1971: Salton, 1989; Willett, 1988).

Like many departments of librarianship and information science, the
Department of Information Studies at the University of Sheffield has had a
long-standing interest in the development of methods for processing textual



databases (see, e.g., Lynch and Willett, 1987). It has additionally pioneered a
range of techniques for processing the databases of chemical structures that
play an increasingly important role in the computer-aided discovery of novel
drugs. The Department’s dual research focus has led to the realisation that
it is often, though by no means invariably, the case that algorithms and data
structures that can be applied to one type of database processing can also be
applied to the other, There are several reasons for this. Firstly, there are
clear similarities in the ways that chemical and textual database records are
characterised. The documents in a text database are each typically indexed
by some small number of keywords, in just the same way as the molecules in
a chemical database are each characterised by some small number of
substructural features chosen from a much larger number of potential attributes
(as discussed further in the next section of this paper). Moreover, both types
of attribute follow a well-marked Zipfian distribution, with the skewed
distributions that characterise the frequencies of occurrence of characters,
character substrings and words in text databases being mirrored by the
comparable distributions for the frequencies of chemical substructural moieties.
These shared characteristics mean that the two types of database are
amenable to efficient processing using the same types of file structure. Finally,
in just the same way as a document either is, or is not, relevant to some
particular user query, so a molecule is active, or is not active, in some particular
biological test, thus allowing comparable performance measures to be used
to assess search effectiveness in chemical and textual retrieval systems.

In a previous paper (Willett, 1999), we have given several examples of
the close relationships that exist between textual and chemical information
processing. Here, we focus on chemical applications of similarity and
clustering methods that were first developed for applications in textual
information retrieval. Indeed, it was our experience of these methods in the
textual domain that led us to consider their application to chemical searching
and clustering (Willett, 1987) and, subsequently, to molecular diversity analysis
(Martin et al., 2001), with many of these Sheffield, text-derived methods
now incorporated in commercial software for chemical information
management.

CHEMICAL DATABASE SYSTEMS

Many different scientific disciplines (such as synthetic organic chemistry,
structural biology, pharmacology and toxicology) are needed to discover the
new drugs that are the lifeblood of the pharmaceutical industry (see, €.g.,



Landau et al. 1999). The huge costs and extended timescales that characterise
the industry mean that it is willing and able to make very substantial investments
in any technology that can increase the speed with which drugs, i.e., novel
chemical molecules with beneficial biological properties, are brought to the
market place (and similar comments apply to the pesticides and fungicides
developed by the agrochemicals industry). Such investments have provided
one of the principal driving forces for the highly sophisticated systems that
have been developed for the storage, retrieval and processing of two-
dimensional (2D) and three-dimensional (3D) structures of chemical
compounds (Ash ez al., 1991; Martin and Willett, 1998).

The principal method of representation for a 2D chemical structure diagram
is a labelled graph in which the nodes and edges of a graph represent the
atoms and bonds, respectively, of a molecule. A chemical database can
hence be represented by a large number of such graphs, with searching
historically being carried out using two types of graph isomorphism algorithms.
Structure searching involves an exact-match search of a chemical database
for a specific query structure as is required, for example, to retrieve the
biological assay results and the synthetic details associated with a particular
molecule. Such a search is effected by means of a graph isomorphism search,
in which the graph describing the query molecule is checked for isomorphism
with the graphs of each of the database molecules. Substructure searching
involves a partial-match search of a chemical database to find all those
molecules that contain a user-defined query substructure, irrespective of the
environment in which that substructure occurs. Forexample, Table 2 shows
typical substructure search output, with all of the retrieved molecules
containing the dipheny! ether query moiety.

A substructure search is effected by checking the graph describing the
query substructure for subgraph isomorphism with the graphs of each of the
database molecules (Barnard, 1993). However, subgraph isomorphism is
known to be NP-complete and substructure searching in databases of non-
trivial size would hence be totally infeasible if it were not for the use of an
initial screen search, where a screen is a substructural feature, the presence
of which is necessary, but not sufficient, for a molecule to contain the query
substructure. These features are typically small, atom-, bond- or ring-centred
fragment substructures that are algorithmically generated from a connection
table when a molecule is added to the database that is to be searched. The
fragments that have been chosen for use in screening are listed in a fragment
coding dictionary, which will typically contain a few hundred or a few thousand
carefully selected fragments (Barnard, 1993). Each of the database structures
is analysed to identify those screens from the coding dictionary that are present,



and then represented for search by a fixed-length bit-string in which the non-
zero bits correspond to the screens that are present. The query (sub)structure
is subjected to the same process and the screen search then involves checking
the bit-strings representing each database structure for the presence of the
screens that are encoded in the bit-string representing the query substructure.

Only a very small fraction of a database will normally contain all of the
screens that have been assigned to a query substructure, and thus only these
few molecules need to undergo the final, time-consuming search to ensure
that there is an exact subgraph isomorphism between the graphs representing
the query substructure and each database structure. This simple, two-stage
procedure (i.e., screen searching and subgraph searching) has formed the
basis for most operational 2D substructure searching systems, and similar
techniques are used for 3D substructure searching (Martin and Willett, 1998).
The idea of a split-level search is analogous to that used in signature-based
systems for serial text scanning, where an initial bit-string search is used to
eliminate most of the documents in a database from a time-consuming pattern
matching search (see, e.g., Faloutsos, 1985).

CHEMICAL SIMILARITY SEARCHING

Substructure searching, whether in 2D or in 3D, provides an invaluable
tool for accessing databases of chemical structures. It does, however, have
several limitations that are inherent in the retrieval criterion that is being used,
which is that a database structure must contain the entire query substructure
in precisely the form that has been specified by the user. Firstly, and most
importantly, a substructure search requires that the user who is posing the
query must already have acquired a well-defined view of what sorts of
structures are expected to be retrieved from the database. This is clearly
very difficult at the start of an investigation, when perhaps only one or two
active structures have been identified and when it is not at all clear which
particular feature(s) within them are responsible for the observed activity.
Secondly, there is very little control over the size of the output that is produced
by a particular query substructure. Accordingly, the specification of acommon
ring system, such as the benzodiazepine system that forms the nucleus of
many tranquillisers. can result in the retrieval of many thousands of compounds
from a chemical database. Finally, a substructure search results in a simple
partition of the database into two discrete sub-sets (i.e., those structures that
contain the query and those that do not) and there is no direct mechanism by
which the retrieved molecules can be ranked in order of decreasing probability
of activity.
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These limitations are entirely analogous to those suffered by Boolean
methods for text retrieval (Salton, 1989; Sparck Jones and Willett, 1997). In
just the same way as Boolean retrieval has increasingly been complemented,
or even supplanted, by best-match retrieval methods in text search engines,
so substructure searching has now been augmented by chemical similarity
searching. Similarity searching requires the specification of an entire target
structure, rather than the partial structure that is required for substructure
searching. The target molecule is characterised by a set of structural features,
and this set is compared with the corresponding sets of features for each of
the database structures. Each such comparison enables the calculation of a
measure of similarity between the target structure and a database structure,
and the database molecules are then sorted into order of decreasing similarity
with the target. The output from the search is a ranked list, where the
structures that the system judges to be most similar to the target structure are
located at the top of the list. Accordingly, if an appropriate measure of similarity
has been used, the first database structures inspected will be those that have
the greatest probability of being of interest to the user (Carhart ez al., 1985).

At the heart of any similarity searching system is the measure that is
used to quantify the degree of structural resemblance between the target
structure and each of the structures in the database that is to be searched.
Willett ez al. (1998) provide an extended review of inter-molecular
structural similarity measures, focusing on those that are sufficiently rapid
for similarity searching in databases of non-trivial size. The most common
measures of this type are based on comparing the fragment bit-strings that
are used for 2D substructure searching, so that two molecules are judged
as being similar if they have a large number of bits, and hence
substructural fragments, in common. A normalised association coefficient,
typically the Tanimoto coefficient, is used to give similarity values in the
range of zero (no bits in common) to unity (all bits the same) (Willett et ai.,
1998). Specifically, if two molecules have 4 and B bits set in their
fragment bit-strings, with C of these in common, then the Tanimoto
coefficient is defined to be

Gl g
A+ B=-C

Such a similarity measure is clearly very similar to those employed in text
retrieval systems, where coefficients such as the Dice and Cosine coefficients
are used to quantify the numbers of words or index terms common to a query
and to a database document (Salton, 1989).



While fragment-based measures such as the Tanimoto one above clearly
provide a simple, indeed simplistic, picture of the similarity relationships
between pairs of structures, they are both efficient (since they involve just
the application of logical operations to pairs of bit-strings) and effective (since
they have been shown to be capable of bringing together molecules that are
judged by chemists to be structurally similar to each other) in operation. The
latter characteristic is most surprising, given that the fragments that are used
for the calculation of the similarities were originally designed to maximise the
efficiency of substructure searching, not the effectiveness of similarity
searching. Examples of some of the top-ranked molecules retrieved in a
Tanimoto-based 2D similarity search are shown in Figure 2, where it will be
seen that the search has been successful in retrieving molecules that are
closely related to the target structure; however, there is no single, unifying,
common substructure as is the case in a substructure search such as that
shown in Figure 1.

Many other types of similarity measure have been described (Dean, 1994;
Johnson and Maggiora, 1990), and at least some have been used for database
searching: however, none of these measures has proved to be anywhere
near as popular as the simple, fragment-based measures described above,
and this type of measure is hence assumed in the remainder of this paper
unless stated otherwise.

CLUSTERING OF CHEMICAL DATABASES

Random screening has long played an important r6le in lead-discovery
programmes. Here, compounds are selected from a database and then tested
in a bioassay that determines whether the selected compounds have the
biological activity of interest. The identification of an active compound is
used to initiate an iterative process in which a similarity search is used to
identify structurally related molecules that are tested, in their turn, for activity.
Once several such actives have been identified, a query can be defined to
enable substructure searching to be carried out.

Considerations of cost-effectiveness dictate that the compounds selected
for biological testing in the initial stages of lead-discovery programmes cover
the full range of structural types that are available to an organisation, and
there has thus been much interest in computer-based methods that can be
used to maximise the coverage of structural space. Cluster analysis, or
automatic classification, was the first such technique to be used for this

purpose.
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Cluster analysis is the process of subdividing a group of objects (chemical
molecules in the present context) into groups, or clusters, of objects that
exhibit a high degree of both intra-cluster similarity and inter-cluster
dissimilarity (Arabie et al., 1996; Everitt, 1993). The clustering of document
databases so as to identify clusters that contain large numbers of relevant
documents has been studied for many years (Jardine and van Rijsbergen,
1971, Willett, 1988) and the analogies between textual and chemical
databases noted previously led us to commence an extended programme
of research to determine whether comparable methods could be used to
cluster chemical databases. The principal aim of the work was to obtain an
overview of the range of structural types present within a dataset by selecting
one (or some small number) of the molecules from each of the clusters
resulting from the application of an appropriate clustering method to that
dataset. The representative molecule for each cluster is either selected at
random or selected as being the closest to the cluster centroid. These
selected compounds are then tested in the bioassay of interest. If a
compound proves active it is then appropriate to assay the other compounds
in its cluster since these may also exhibit the activity of interest: the fact that
structurally similar molecules have similar properties is normally referred to
as the similar property principle (Johnson and Maggiora, 1990), which is
analogous in many ways to the cluster hypothesis that provides the principal
rationale for the use of clustering in document retrieval (Jardine and van
Rijsbergen, 1971).

Very many different clustering methods have been described in the
literature, and it was hence necessary to compare the effectiveness of the
various methods for clustering chemical structures, typically represented by
the fragment bit-strings that are used for substructure and similarity searching
as discussed previously. These comparisons used a ‘leave-one-out’
experimental methodology that was first suggested by Adamson and Bush
(1973) and that is based upon the similar property principle. Assume that the
value of some quantitative (i.e., interval or ratio scale) property has been
measured for each of the molecules in a dataset. The property value of a
molecule, 7, within this dataset is assumed to be unknown, and the classification
resulting from the use of some particular clustering method is scanned to
identify the cluster that contains the molecule /. The predicted property
value for I, P(J), is then set equal to the arithmetic mean of the observed
property values of the other compounds in that cluster. This procedure results
in the calculation of a P(J) value for each of the N structures in the dataset,
and an overall figure of merit for the classification is then obtained by calculating
the product moment correlation coefficient between the sets of N observed
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and N predicted values. The most generally useful clustering methods will be
those that give high correlation coefficients across as wide a range of datasets
as possible.

Adamson and Bush’s approach to the comparison of clustering methods
was used by Willett (1987) in a study of over 30 hierarchic and non-hierarchic
clustering methods when applied to 10 small datasets for which physical,
chemical or biological property data were available. The study found that the
best results were obtained with Ward’s hierarchic-agglomerative method
(Ward, 1963), with the non-hierarchic nearest-neighbour method of Jarvis
and Patrick (1973) performing almost as well. At the time that these
comparative experiments were carried out, computer limitations (in terms of
both raw CPU speeds and the algorithms available) meant that Ward’s method
could not be applied to chemical databases of substantial size. The Jarvis-
Patrick method was thus rapidly adopted as the clustering method of choice
in commercial chemical database software, not only to select compounds for
random screening but also to cluster the outputs of substructure searches
that retrieve very large numbers of molecules, thus providing the searcher
with an overview of the structural classes that contain the substructure of
interest (Willett, 1987). However, the method does have limitations and
subsequent comparisons (Brown and Martin, 1996, 1997; Downs et al., 1994)
have reaffirmed the general superiority of Ward’s method. The availability
of improved computer hardware and of the efficient reciprocal nearest
neighbours algorithm (Murtagh, 1985) means that this method can now be
applied to databases containing some hundreds of thousands of molecules in
an acceptable amount of time, and Ward’s method is thus becoming available
in commercial chemical database software; larger datasets, however, still
require use of the Jarvis-Patrick method.

MOLECULAR DIVERSITY ANALYSIS

Pharmaceutical research has been revolutionised over the last few years
by the emergence of combinatorial chemistry (see, e.g., DeWitt and Czarnik,
1997), a body of techniques for the parallel synthesis and testing of sets of
molecules, called combinatorial libraries, that contain large numbers
(hundreds or thousands) of structurally related molecules. Such techniques
are increasingly replacing the traditional approach to drug discovery, which
involved a sequential mode of processing with molecules being synthesised
and then tested for biological activity one molecule at a time.

The need to ensure coverage of the largest possible expanse of chemical
space in the search for bioactive molecules means that combinatorial
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approaches seek to maximise the diversity of chemical libraries, i.e., the
degree of structural variation that is present within the set of product molecules
resulting from a combinatorial synthesis, whilst ensuring that as few compounds
as possible should be selected for synthesis and biological testing on grounds
of cost-effectiveness. The concept of diversity is normally quantified using
similarity-based techniques that are a natural development of those discussed
above, with a diverse set of molecules being selected by consideration of
their Tanimoto-based inter-molecular similarities.

There is a trivial algorithm available to identify the most diverse n-
compound subset of an N-compound database or library (where, typically,
n<<N). This algorithm involves generating each of the

N!
ni(N —n)!

possible subsetsand then caloulating theirdiversitiesusing adiversity index
(some function of the inter-molecular similarities in the chosen subset): the
optimal subset is then that group of compounds that has the greatest value of
the diversity index. Such a procedure is computationally infeasible for realistic
values of » and N and there has thus been much interest in alternative
approaches for selecting diverse sets of molecules (Dean and Lewis, 1999;
Ghose and Viswanadhan, 2001). Cluster-based selection, as described in the
previous section, was the first such approach to be used (see, e.g., Shemetulskis
et al., 1995) but it is now increasingly being complemented by alternative
approaches. One such approach is dissimilarity-based compound selection,
the basic algorithm for which was first described by Lajiness (1990) and
Bawden (1993). The Bawden-Lajiness algorithm involves selecting a
compound at random and then iteratively choosing that previously unselected
compound that is most dissimilar to those that have already been selected.
The algorithm is very simple in concept but has an expected time complexity
of order O(n*N) for selecting an n-compound subset from an N-compound
dataset, and might hence be too time-consuming for large-scale applications.

It was at this point that we turned again to work on hierarchic document
clustering. The various hierarchic clustering methods differ only in the precise
criterion that is used to measure the similarity between two clusters of
documents at each stage in the creation of a hierarchy. The appropriate
criterion for the inter-cluster similarity in the group-average method is the
average of all of the pairwise inter-document similarities, where one document
is in one of the two selected clusters and the other document is in the other
cluster. Voorhees (1986) demonstrated that precisely the same average
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similarity could be obtained from a procedure that involved just a single similarity
calculation using the weighted centroids of the two clusters. This elegant
equivalence provides a highly efficient way of implementing the group-average
method; however, we realised that it can also be applied much more generally
to any situation where: sums of similarities, rather than individual similarities,
are required; where the cosine coefficient is used to measure the similarity
between pairs of objects; and where the objects that are being compared are
characterised by some form of vector-like representation (such as fragment
bit-strings). Specifically, Voorhees’ result can be used to choose the most
dissimilar molecule in the selection step of the Bawden-Lajiness algorithm, if
by “most dissimilar” we mean that molecule with the largest sum of
dissimilarities to the molecules that have already been chosen). This results
in an algorithm with an expected time complexity of O(nN), thus allowing the
Bawden-Lajiness algorithm to be used on very large files of compounds
(Holliday et al., 1995). It should be noted that later studies have suggested
the superiority of alternative dissimilarity-based selection algorithms (Agrafiotis
and Lobanov, 1999; Snarey et al., 1998); however, our work does provide yet
another example of the ways in which approaches first designed for processing
text databases are applicable to the very different domain of computer-aided
drug discovery.
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Figure 1: Sample output from a 2D substructure search
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Figure 2: Sample output from a 2D similarity search
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