107

RECONCILIATION OF KNOWLEDGE -
APPLICATIONS IN AUTOMATED
DATABASE DESIGN DIGANOSING

Shahrul Azman Mohd. Noah
Faculty of Information Science and Technology,
National University of Malaysia, 43600, Bangi, MALAY SIA

email: samn(@ftsm.ukm.my

Michael Williams
School of Computing, University of Glamorgan,
Pontypridd, CF3 1DL, UK.
email: m.d.williams(@swansea.ac.uk

ABSTRACT:

The knowledge reconciliation technique to represent real world knowledge
has been used by an automated database design tool when performing the
task of design synthesis. However, the capacity of such an approach to
enhance the diagnostic capabilities of automated database design tools has
yet to be explored and evaluated. This paper discusses how the knowledge
reconciliation technique has been used during the process of automated
database design diagnosing by a prototype tool. Findings suggest that this
technique has the potential to improve the diagnostic capabilities of the
automated database design tools by facilitating the detection and subsequent
resolving of design inconsistencies that would remain undiscovered in situations
where system-held real world knowledge was not available.

INTRODUCTION

Automated database design tools employ an artificial intelligence technique
in providing assistance to users during the process of database analysis and
design. Such assistance can be broadly categorised as design synthesis and
design diagnosis (Oxman and Gero, 1987). Design synthesis is where the
tools capable of generating design output, whereas, design diagnosis is where
the tools detect any inconsistencies and redundancies that may exist and
suggest corrections in design. Although there have been a number of
automated database design tools emerged from research activities (Lloyd-
Williams and Beynon-Davies, 1992; Storey and Goldstein, 1993), human



108

designers consistently outperform such tools at this complex analytical task.
Human designers possess what might be called as knowledge of the real
world in performing the analysis and design process. For instance, a human
designer is capable of diagnosing inconsistencies occurring as a result of
using different terms or words for the same concept such as “client” and
“customer”, or different forms of the same verb such as “reach” and “taught”,
regardless of the application domain. As aresult, there have been numerous
calls for the representation of real world knowledge within such tools, couple
with the ability to reason and make use of this knowledge.

A number of approaches to representing and exploiting real-world
knowledge have been proposed, including the rhesaurus approach (Lloyd-
Williams, 1994; 1997), the dictionary approach (Kawaguchi et al. 1986) and
the knowledge reconciliation approach (Storey et al., 1993; 1994). While
these approaches have been consistently used in providing assistance to users
within the context of design synthesis, their contributions to the tasks of design
diagnosis are yet to be explored. This paper presents the implementation and
evaluation of the knowledge reconciliation technique to the process of
automated database diagnosing using a basic/generic prototype tool as a
platform for implementation. The aim is to ascertain as whether such a
representation has the potential of being exploited in order to assist users
during the tasks of automated database design diagnosing.

OVERVIEW OF AUTOMATED DATABASE
DESIGN PROCESSING

In this section, we discuss the activities involved in automated database
design. The discussion is based upon a prototype automated database design
tool developed to support such activities. The tool under consideration is the
Intelligent Object Analyser (IOA) which provides support for the design of
the structural (data) aspects of object-oriented databases. It is not the purpose
of this paper to discuss IOA in depth, however, a brief outline of the structure
and method of operation is required in order to illustrate how the real-world
knowledge may be represented and exploited during design processing. Further
details of IOA could be found in Shahrul Azman (1999, 2000b). During a
design session, IOA follows a two-step procedure.

The first step involves creating an initial representation of the application
domain (known as the problem domain model) and the subsequent
refinement of this model.



109

The second step involves the refinement of the problem domain model
by detecting and resolving any inconsistencies that may exist, and the
transformation of the model into object-oriented form.

The first stage of processing requires a set of declarative statements that
describe the application domain to be submitted to IOA. These statements
are a variation of the method of interactive schema specification described
by Baldiserra et al (1979), being based upon the binary model described by
Bracchi et al (1976). Each statement links together two concepts (taking the
form 4 verb-phrase B), and falls into one of three classes of construct,
corresponding directly to the structural abstractions of association,
generalization, and aggregation. The statements are used to construct a
problem domain model representing the application domain. Once constructed,
IOA attempts to confirm it’s understanding of the semantic aspects of the
problem domain model; that is, whether each structure within the model
represents generalization, aggregation or association.

Once constructed, the problem domain model is submitted to a series of
refinement procedures in order to detect and resolve any inconsistencies
(such as redundancies that may be present within generalization hierarchies)
that may exist. These procedures are performed both with and without the
requirement of user input (sometimes referred to as external and internal
validation respectively). Once such inconsistencies have been resolved, I[OA
makes use of the problem domain model in order to generate a conceptual
model (in object-oriented form).

There are four types of inconsistencies (errors) that should be detected
and resolved by the IOA system. These are as follows.

» Semantic inconsistencies. Inconsistencies occurring as a result of missing
links (i.e. no associated relationships for a particular concepts) or
transitivity that may exists within the generalisation or aggregation
hierarchies.

o Inconsistent concepts. Inconsistencies occurring as a result of missing
properties (i.e. no associated properties for a particular concept).

® Redundant inherited properties and relationships. Redundancy
occurring within a generalisation hierarchy where a generic class
(superclass) and its corresponding specific class(es) (subclass) contain
the same properties or participate with the same relationships.

e Redundant elements. Inconsistencies occurring as a result of synonyms
such as synonymous concepts and relationships which usually lead in
turn to redundancies.



110

The detection and removal of the first three types of inconsistencies is a
straightforward process which requires the IOA to inspect each node of the
problem domain model and the corresponding links associated with it.
Detection of any inconsistency will then brought to the attention of the user
for confirmation of its removal. Based upon our testing of the tool during the
development process, these types of inconsistencies can be resolved
consistently by the tool without the requirement of knowledge of the real
world.

However, detection of the fourth type of inconsistency (redundant
elements) can be regarded as a complex process. The approach taken by
TOA in detecting and resolving this type of inconsistency is based upon the
object type and mismatch rules involving the comparison of pairs of association
structures of the form “A association-1 B” and “X association-2 ¥ within
the problem domain model. For instance, if the verb-phrase “association-1"
is identical to the verb-phrase “association-2", and 4 is identical to X then
the possibility exists that concepts X and Y are synonymous. The detection of
this type of inconsistency, however, is only performed if 4 and B and
“association-1" and “association-2" are exactly the same. The rule used
is as follows.

Rule 1: Let Av, Band X v, Y be the pair of associations structures,

where A, B, X and Y are the concepts and v, and v, are the verb-

phrases. Therefore,

(i) {if A=Xandv,=v, then it could be that B is a synonym of Y (B =
Y)} or

(i) {if A=Y and v =v, then it could be that B is a synonym of X (B =
X)} or

(iii) {if B = X and v, = v, then it could be that A is a synonym of Y(A=
Y)} or

(iv){if B=Y and v, = v, then it could be that A is a synonym of X(A=

X)}.

Figure 1 illustrates an example of such an inconsistency capable of being
detected by IOA. In this example the structures correspond to Rule 1.
Therefore the possibility exists that the concepts “Operation” and “Surgery”
are synonymous and considerations of removing one of the redundant concepts
can be brought to the attentions of the user.



111

Surgery

Performs
Doctor Performs Operation
J ‘ Rule 1
XA
Doctor Performs Operation

Figure 1: The detection of redundant elements using Rule 1

The object type and mismatch rules are also used to detect and resolve
redundant relationships. Such circumstances occur if the concepts 4 and X
and B and Y are exactly the same. The rule used is as follows.

Rule 2: Let A v, B and X v, Y be the pair of associations structures,
where A, B, X and Y are the concepts and v, and v, are the verb-

phrases. Therefore,
if (A=Xand B=Y)or (A=Y and B =X) then it could be that v is a
synonym of v, (v, =v,), or v, and v, are related by tenses.

Figure 2 illustrates such a situation where pair of association structures
can be classified as redundant.



112

- fExamines
Doctor Patients
E

xamined-by

Rule 2

Doctor = Examine—h{ Patients

Figure 2: The detection of redundant relationships using Rule 2

Although the majority of inconsistencies can be diagnosed and resolved
consistently by the IOA, there is potential for design errors that could be
easily identified by a human designer to remain undetected but IOA. For
instance, structures such as “Surgeon Performs Surgery” and “Surgeon
Conducts Operation” could not be detected by IOA, since it is unable to
detect the similarity implied by “Performs” and “Conducts”. A similar
undiagnosed case is represented by the structures “Doctor Advises Patient”
and “Patients Consult Physician”. In this case the relationship between the
structures “Advises” and “Consult” and between the concepts “Doctor”
and “Physician” are unknown to the tool.

In the next section of this paper, we will discuss how the knowledge
reconciliation technique can be exploited to assist in the detection of such
examples of undiagnosed cases.

The Knowledge Reconciliation Technique

The use of the knowledge reconciliation approach in automated database
design was initially proposed by Storey et al. (1993, 1994), exhibited in the
Common Sense Business Reasoner (CBSR) system which was integrated
with an automated database design tool called the View Creation System
(VCS) (Storey and Goldstein, 1990a; 1990b). The main purpose of the CBSR
system however was to augment the effectiveness of the VCS tool in terms
of increasing the capacity of the tool to suggest required missing concepts
and relationships.



113

In order to support this, the approach organises the encapsulated domain
knowledge into a collection of domain specific concepts and relationships
between these concepts. This knowledge is subsequently reconciled with the
user-specified application domain by the system in order to identify any required
missing design elements. This reconciliation process employed by the CBSR
system includes the reconciliation of concepts and the reconciliation of
association relationships (in the form of verb-phrases), which results in the
classifications/mappings of concepts and relationships either as same, close
or different. For example the concept “Surgery” of the user’s specified
application domain and the concept “Operation” of the system’s encapsulated
domain knowledge could be classified as the same because both of the concepts
are synonymous.

We will further discuss the knowledge reconciliation technique in the
next section.

The implementation of knowledge reconciliation technique

The basic processing of the IOA tool has been previously discussed in
this paper. In this section, therefore, we will illustrate how the knowledge
reconciliation technique to representing real world knowledge has been
implemented in the IOA tool. During implementation, we follow the same
approach as those implemented in the CBSR system. However, for those
concepts that cannot be classified either as same, close or different, are
automatically classified as unknown by I0A. The unknown classification is
just a way of storing information for those concepts that cannot be mapped
with the other concepts.

The descriptions of these classifications/mappings are as follows.

e same(X,0). A user specified concept X and a real world knowledge
concept of o are classified as same if the concepts have the same name
or they are synonymous;

e close(X,a). A user specified concept X and a real world knowledge
concept of o are classified as close if one concept is a specialisation of
the other concept or both are specialisation of a common generic concept:

o different(X,a). A user specified concept X and a real world knowledge
concept of & are classified as different if the user explicitly specified
them as different; and

e unknown(X,). A user specified concept X and a real world knowledge
concept of o are classified as unknown if the concepts cannot be classified



114

either as same, close or different (i.e. the IOA unable to identify any
concepts that can be mapped with this type of concepts).

Similarly, a pair of verb-phrase relationships are classified as same if
they are exactly the same, singular/plural of each other or they are synonymous;
close if they are related by the active/passive form or related by time/tense
or different if they are explicitly classified different by the user; and unknown
if they cannot be classified either as same, close or different.

The above classifications or mappings can be performed by the IOA
system automatically or by direct questionings to the user if any elements of
uncertainty occurred. From these classifications, the tool is capable of gaining
some initial “understanding” of the evolving design model as illustrated by

Figure 3.
— Performed-by —p Surgeon iipertorms —

Operation

Surgeon Performs Surgery

Figure 3: An example of understanding gained by the IOA system
after the reconciliation of knowledge process.

The figure illustrates an example of a possible initial understanding gained
by the system. It illustrates that the user-concepts “Surgery” and “Operation”
are synonymous because “Surgery” has the same mapping with the domain-
concept “Surgery” and the domain-concept “Operation™ also has the same
mapping with the user-concept “Surgery”. The figure also illustrates the
possible relation between the user-associations “Performs” and “Performed-
by” because of the similar reason as previously stated.

Therefore, apart from the capacity of identifying the potential missing
design elements as has been previously issued by the CBSR system, such an
understanding also capable of being exploited to enhance the tool’s diagnostic
capabilities (detecting synonymous concepts for instance as illustrated by the
previous example).



115

The remaining of this section provides discussions of how such capabilities
have been exploited.

Exploiting the knowledge reconciliation technique
in automated database design diagnosing

As previously mentioned, the detection of redundant elements is performed
by the IOA system from the use of Rules 1 and 2. Although the majority of
inconsistencies can be diagnosed and resolved consistently by the IOA from
these rules, there are three known undiagnosed cases, where relying on Rules
1 and 2 alone fail to detect the inconsistencies. As an illustration, consider a
pair of association structures of the form “A v,B”and “Xv, Y”, where A, B,
X and Y are the concepts and v, and v, are the verb-phrases. The three
undiagnosed cases are as follows.

Case : (A=X)A(V, ZV)AB#Y)V((A=X)A (v, #V,)A(B=
YDVA=Y)AV, #v)AB#X)V((A=Y)A (v, #V,)A(B=X)).
For example “Academic Teaches Course” and “Course Taught-by
Lecturer”. This case can be resolved if a tool can at least identify the
similarities between the verb phrases or the similarities between the
concepts.

Case2: (A%£X)A(V,=V)AB£Y)V((A#Y)A(V,=V)A(B=#
X)). For example “Lecturer Advises Graduate-student™ and “Academic
Advises Postgraduate-student”. This case can be resolved if a tool
can at least identify the similarities between either pair of concepts.

Case3: (A=X)A(V, ZV)AB2Y)V(AZY)A (v, #V,)A(B#
X)). For example “Lecturer Advises Graduate-student” and “Academic
Consults Postgraduate-student”. This case can be resolved if a tool
can at least identify the similarities between either pair of concepts and
the similarities between the verb phrases, or if a tool can identify the
similarities between both pair of concepts.

However, the initial “understanding” that can be gained from the
reconciliation of knowledge previously discussed has the potential of being
exploited to resolve such undiagnosed cases. Follows describe how such
undiagnosed cases could possibly be resolved from the understanding gained
as a result of the knowledge reconciliation process.



116

Problem domain model

| g .
| Operation )— Perfarmed-by —p- Surgeon — Performs — Surgery
) |

samea

Surgeon } -Performs

N /
_,_.A/

Knowledge reconciliation

— ) structure
‘ Rule 3
b
Surgeon '— Performs —DL Surgery
L o .

Figure 4: An example of using the understanding gained from the
knowledge reconciliation process in the detection and removal
of an inconsistency similar to Case 1 (Rule 3)

The initial “understanding” gained from this reconciliation process, allows
the possibility to further detect the various types of inconsistencies. Consider
an example similar to Case 1, “Surgeon Performs Surgery” and “Operation
Performed-by Surgeon”. If appropriate information is available and the
required classifications/mappings existed as illustrated by Figure 4, such an
inconsistency can be detected and resolved. In the example provided in Figure
4, there has been the same mapping between “Surgery” of the real world
knowledge concept with “Surgery” and “Operation™ of the user specified
concepts. Therefore, there is a possibility that “Surgery” and “Operation™
of the user’s specified concepts are synonymous. This conclusion is reached
based upon the following rule.

Rule 3: Let Av, Band X v, Y be the pair of users’ specified associations
structures (where A, B, X and Y are the concepts and v, and v, are the
verb-phrases) and o ¥ B as the real world knowledge structure (where
o and 3 are the concepts and ¥ is the verb-phrase). If same(A, o) and
same(X, o) , then it could be that A is a synonym of X (A = X).



117

A different type of “understanding” can also be used to assist in the
detection of inconsistencies relating to Case 1. For example consider the
structures of “Physician Examines Patient” and “Patient Examined-by
Doctor”, and also consider the understanding illustrated by Figure 5.

Problem domain model

—
| e
Physician Examines — Pauent Examlned by Doctor

\ A

Patient Examines Doctor Knowledge reconciliation

structure
Rule4
L Patient ,—Examined-hy 4.{ Doctor

Figure 5: An example of using the understanding gained from the
knowledge reconciliation process in the detection and removal of an
inconsistency similar to Case 1 (Rule 4)

In this case, the tool knows that the user specified concepts of “Physician™
and “Doctor” may be related since “Examines” and “Examined-by” are
related. This is achieved by the following set of rules.

Rule 4: Let Av, Band X v, Y be the pair of users’ specified associations

structures (where A, B, X and Y are the concepts and v, and v, are the

verb-phrases) and o y 3 as the real world knowledge structure (where

o and B are the concepts and y is the verb-phrase).

(i) If (A=X)A [(same(v,,Y) A same(v,, 1)) V (close(v,, Y) A close(v,,
7)) V (same(v,, Y) A close(v.,, Y)) V (close(v,, Y) A same(v,, Y))] A
(B #Y) then, B and Y may be related, OR

(ii) If (A=Y)A [(same(v,,Y) A same(V,, ) V (close(v,, y) A close(v,,
1) V (same(v,, Y) A close(v,, Y)) vV (close(v,, Y) A same(v,, I A
(B # X), then, B and X may be related, OR



118

(i) If (B=Y) A [(same(v , Y) ~ same(v,,Y)) V (close(v,, 1) A close(v,,
V) V (same(v,, Y) A close(v,, ) V (close(v , Y) A same(v., ¥))] A
(A # X), then, A and X may be related, OR

(iv) f (A=Y) A [(same(v . y) A same(v., ¥)) V (close(v , ¥) A close(v,,
)V (same(v , Y) A close(v,, 1)) Vv (close(v,, Y) A same(v,, ¥))] A
(A #Y), then, A and Y may be related.

Inconsistencies similar to Cases 2 and 3 can also be resolved from the
above set of rules if the required mapping/classifications exists. Figure 6
illustrates an example of such an understanding required to detect such an
inconsistency. In this example, using Rule 3, will resolve the synonymous
between the concepts “Surgeon™ and “Physician”, and then using Rule 4
will resolve the synonymous between “Operation™ and “Surgery”, since
the mappings of same(Performs, Performs) and close(Performed-by.
Performs) exist,

~
Surgsen Problem domain model

|._ Parforms Surgery
I L -

r{-—‘\
Physician }Q—P ormed-by —— Oparation Siime
same L J \

same

o\

Performs Surgery Knowledge reconciliation

structure
] Rule 3
mm -

Enrolled-by

T Operation
e

<

Surgeon }* —— Performs

Figure 6: An example of using the understanding gained from the
knowledge reconciliation process in the detection and removal of an
inconsistency similar to Case 2 and Case 3.




119

So far, we have only illustrated the significance of the same and c/ose mapping
to the diagnostic activities of automated database design tools. The unknown
mapping, however, does not make any significant contribution to the diagnostic
activities of automated database design tools. As previously mentioned, the
mapping is just a way of informing the system’s knowledge base for those
concepts that cannot be classified either as same, close or different which
are crucial for the system’s internal inference reasoning. The different
classification, however, do make some contributions within the aspects of
system’s intelligence. For example, if structures such as “Surgeon Performs
Operations” and “Surgeon Assists Operation”, would be detected by IOA
as being potentially redundant (Rule 2), although in reality it would be
recognized otherwise by humans. Therefore, a series of interactions with the
user will take place. However, if an understanding that the terms “Performs”
and “Assists” are not related (different) based from the reconciliation process,
the requirements for such a series of interaction will be removed. Further
details regarding the implications of the knowledge reconciliation technique
to the intelligence aspects of automated database design tool could be found
in Noah and Lloyd-Williams (1998) and Shahrul Azman (2000b).

EMPIRICAL TESTING

In order to ascertain as to whether the previously explored knowledge
reconciliation approach provides significant contribution to the diagnostic
performance of automated database design, a series of testing has been
conducted. During the course of conducting this testing, a number of domains
were modelled according to the knowledge reconciliation approach. In each
case, the real world knowledge structures were developed independently of
the example scenarios used during testing. This was a deliberate attempt to
minimise any bias that might be introduced by taking the content of the test
material into account. In normal circumstances, it would be a logical procedure
to use each example application domain encountered to augment the real-
world knowledge held, thus, increasing the knowledge of the system in the
way a human designer would automatically update his/her knowledge when
working within a new domain. However, for the purpose of testing the
contribution of real-world knowledge to the diagnostic capabilities of automated
database design tools it was decided to develop the knowledge structures
independently of the examples encountered.

The case testing method was viewed as being entirely suitable in this
experimentation work. The approach taken in this testing, firstly requires the



120

production of a number of synthesised errors. The errors introduced included
synonymous concept(s), synonymous or related relationship(s) and a
combination of both. Secondly, each of these synthesised errors and
combinations of them were systematically embedded into the corresponding
design problems to generate the set of test cases.

The set of generated test cases were then executed in IOA with and
without the use of real world knowledge (represented as the knowledge
reconciliation technique). Thus, for each executed test case, two sets of results
were obtained and compared. The design problems used to generate the set
of test cases were primarily extracted from existing literature, the advantage
being that the accompanying solutions could be used as benchmarks and
compared with the IOA-suggested solutions in order to confirm the
appropriateness or otherwise of the designs produced (Noah and Williams,
1998). Thus our approach followed that recommended by Liebowitz (1986)
and O’Keefe and Preece (1996).

The results presented here emanate from a series of tests performed on
university, healthcare and library domain problems found in the general
literature. Using the approach previously discussed, a total of 84, 57 and 48
test cases were generated for the university, healthcare and library domains
respectively. Using the statistical paired t-test method at the 5% of significance
level, the results (number of inconsistencies/errors detected and resolved)
from the execution of using the knowledge reconciliation approach were
compared with the results from the execution when no real world knowledge
was in use. The null hypothesis (H,) being set up in this test is that there is no
significant difference between results from the execution using the knowledge
reconciliation technique and results from executions without using the
knowledge reconciliation technique, in terms of the number of errors detected
and resolved per test. Table | illustrates the paired t-test results for all the
domains.

Table 1: Paired t-test result — number of errors detected and resolved
per test when processing using the knowledge reconciliation technique
as compared when processing without using the knowledge
reconciliation technique

Domain Df t-Value P
University 83 4.68 0.00
Healthcare 56 2.43 0.01

Library 48 2.54 0.01




121

It can be seen from Table 1 that consistent results have been obtained
and that exploitation of the knowledge reconciliation technique in representing
real world knowledge does contribute to enhancing the diagnostic capabilities
of automated database design tools. The significant P values and the positive
t-Values indicate that the use of the knowledge reconciliation technique
presented in this study has significantly increased the number of errors capable
of being detected and resolved by the automated database design tool.

CONCLUSIONS AND FUTURE WORKS

This paper has described the method of implementing and exploiting the
knowledge reconciliation technique to representing real world knowledge to
the process of automated database design diagnosing. Although, existing
work on knowledge reconciliation technique has been focused on the task of
design synthesis, this paper has revealed that such a representation of real
world knowledge also have the potential to play a significant role during the
process of design diagnosis. Our findings have demonstrated that the
understanding gained from the knowledge reconciliation technique have the
capability of resolving inconsistencies caused by using different forms of the
same verb as well as different terms or words for the same concepts. However,
it is recognised that such capabilities depend greatly upon the accuracy and
completeness of the real world knowledge structures presented.

Considering the fact that a consistent and robust conceptual model has a
strong influence on the overall likelihood of a successful outcome of a database
development project and that the use of system-held real world knowledge
by automated database design tool can assist in the development of such
models, it can be argued that developers of such tools should give consideration
to incorporating elements of real world knowledge into their systems.

Future work includes investigating the possibility of combining the main
characteristics represented by the tested approaches to representing real-
world knowledge in this study, in order to establish a more reliable and effective
real world knowledge model. Another area od future work is to explore other
approaches to representing real world knowledge currently implement by
intelligent software design tools such as the use of analogy (Maiden and
Sutcliffe, 1992), cliché (Reubenstein and Waters, 1991) and design schema
(Lubars and Harandi, 1986).



122

REFERENCES

Baldiserra, C., Ceri, S., Pelagatti, G. & Bracchi, G. 1979. Interactive
specification and formal verification of user’s views in database design.
Proceedings of the 5th International Conference on Very Large
Databases, Rio de Janeiro, Brazil: 262-272.

Bracchi, G., Paolini, P. and Pelagatti, G. 1976. Binary logical associations in
data modeling. In: Nijsen, G. M. (ed.) Modeling in Data Base
Management Systems. Amsterdam: North-Holland: 125-148.

Kawaguchi, A., Taoka, N., Mizoguchi, R., Yamaguchi, T. and Kokusho, O.
1986. An intelligent interview system for conceptual design of database,
in: ECAI '86: The 7th European Conference on Artificial Intelligence.
London: Conference Services Ltd.: 1-7.

Liebowitz, J. 1986. Useful approach for evaluating expert systems, Expert
Systems, 3(2): 86-96.

Lloyd-Williams M. 1997. Exploiting domain knowledge during the automated
design of object-oriented databases, in: Embley, D W and Goldstein, R C,
eds., Proceedings of the 16th International Conference on Conceptual
Modeling. Berlin: Spinger-Verlag: 16-29.

Lloyd-Williams, M. and Beynon-Davies, P. 1992. Expert system for database
design: a comparative review, Artificial Intelligence Review, 6: 263-
283.

Lloyd-Williams, M. 1994. Knowledge-based CASE tools: improving
performance using domain specific knowledge, Software Engineering
Journal, 9(4): 167-173.

Lubars, M.D. and Harandi, M.T. 1986. Intelligent support for software
specifications and design, JEEE Expert, 1(4): 33-40.

Maiden, N.A.M. and Sutclifee, A.G. 1992. Analogously-base reusability,
Behaviour and Information Technology, 11(2): 79-98.

Noah, S.A. and Lloyd-Williams, M. 1998. An evaluation of two approaches
to exploiting real-world knowledge by intelligent database design tools,
in: Ling, T W, Ram, S and Lee, M L, eds., Proceedings of the 17th
International Conference on Conceptual Modelling. Berlin: Springer-
Verlag: 197-210.

O’Keefe, R.M. and Preece, A.D. 1996. The development, validation and
implementation of knowledge-based systems, European Journal of
Operational Research, 92(3): 458-473.

Oxman, R. and Gero, J.S. 1987. Using an expert system for design diagnosis
and synthesis. Expert Systems: The International Journal of
Knowledge Engineering, 4(1): 4-14.



123

Reubenstein, H. B. and Waters, R. C. 1991. The requirements apprentice:
automated assistance for requirements acquisition, JEEE Transactions
on Software Engineering, 17(3): 226-240.

Shahrul Azman, M.N. 1999. Knowledge-based CASE tool for object-oriented
database design. Malaysian Science & Technology Congress 1999,
Johor Bahru, Johor, p. 308-315.

Shahrul Azman, M.N. 2000a. Exploring the contributions of knowledge-
reconciliation approaches to the diagnostic performance of intelligent
database design tools. ITSim2K, UKM, Bangi. Bangi-UKM, p.61-69.

Shahrul Azman, M.N. 2000b. Intelligent systems for conceptual modelling of
databases. TENCON 2000, Kuala Lumpur, 24-27 September 2000.
IEEE, p. 504-5009.

Storey, V.C., Chiang, R.H.L., Dey, D., Goldstein, R.C., Sundararajan, A. and
Sundaresan, S. 1994. Knowledge reconciliation for common sense
reasoning, in: De, P and Woo, C, eds., Proceeding of the 4th Annual
Workshop on Information Technologies and Systems. Vancouver: Univ,
British Columbia: 87-96.

Storey, V.C., Goldstein, R.C., Chiang, R.H.L. and Dey, D. 1993.A common-
sense reasoning facility based on the entity-relationship model, in: EImasri,
R A, Kouramajian, V and Thalheim, B, eds., Proceedings of the 12th
International Conference on the Entity Relationship Approach. Berlin:
Springer-Verlag: 218-229.

Storey, V.C. and Goldstein R.C. 1993. Knowledge-based approach to database
design. Management Information Systems Quarterly, 17(1): 25-46.

Storey, V.C. and Goldstein R.C. 1990a. An expert view creation system for
database design. Expert Systems Review, 2(3): 19-45.

Storey, V.C. and Goldstein, R.C. 1990b. Design and development of an expert
database design system. International Journal of Expert Systems
Research and Applications, 3(1): 31-63.



