Jumal Antarabangsa (Teknologi Maklumat) 3(2002): 11-32

Translation of ER Model to Multidimensional Model
for Data Warehouse — An Automated Approach

OPIM SALIM SITOMPUL & SHAHRUL AZMAN MOHD NOAH

ABSTRACT

Mulridimensional data model has been considered by the database community
as a model to support the application of data warehouse. While this model
has been the de-facto of successful dara warehouse implementation, little has
been said on how to carry out the data warehouse conceptual design. This
paper, however, presents an approach and a tool for the automatic conceptual
data warehouse design. The approach uses an existing ER model described
by using an ER specification language, whereby the model is progressively
translated and extended to include the dimensional functionality necessary
in data warehousing. The output of the translation model is a basic
multidimensional construct such as facts, measures, dimensions, and dimension
hierarchies. Although there is no universally agreed method on the conceptual
design of data warehouse, the approach and tool presented in this paper has
at least demonstrated the practical exploitation of ER model as a basis for
such a design. The paper concludes with a discussion of areas of future
research and development.

Keywords: data warehouse design, multidimensional model, entity relationship
model, automated design tool

ABSTRAK

Komuniti pangkalan data telah mengiktiraf model data multidimensi sebagai
sebagai model utama dalam pembangunan aplikasi gudang data.
Walaubagaimanapun perbincangan dan usulan berhubung dengan pendekatan
dalam proses reka bentuk konseptual gudang data masih lagi kurang mendapat
perhatian. Melalui kertas kerja ini, satu pendekatan dan perisian dalam
mereka bentuk model konseptual gudang data telah diketengahkan. Pendekatan
vang dicadangkan ini melibatkan penterjemahan dan pengembangan model
perhubungan entiti sedia ada (ditakrifkan melalui bahasa spesifikasi
perhubungan entiti) dengan mempertimbangkan fungsian dimensi yang
diperlukan dalam penggudangan dara. Hasil daripada proses penterjemahan
ini ialah satu model asas data multidimensi yang melibatkan fakta, had,

dimensi dan hirarki dimensi. Kertas kerja ini telah menunjukkan kemungkinan
untuk menggunakan model perhubungan entiti sedia ada sebagai asas dalam
mereka bentuk gudang data, walaupun masih lagi riada satu metod yang
dipersetujui bersama di kalangan penyelidik dan pembangun dalam mereka
bentuk gudang data. Kesimpulan dan perluasan penyelidikan dan
pembangunan dalam bidang ini diutarakan di akhir kertas kerja ini.

INTRODUCTION

The concept of data warehouse often viewed as encircling the aspects of
application tools, architectures, information service, and communication
infrastructures to synthesize information useful for decision-making from
distributed heterogeneous operational data sources (Golfarelli et al. 1998).
The model intended to support the application and implementation of a data
warehouse is called the multidimensional data model.

In multidimensional model, data are represented in terms of facts and
dimensions where each fact is associated to multiple dimensions. In this
manner, facts are the focus of interest by which they are analyzed through the
quantifying context stored in measures and the qualifying context determined
through dimension levels (Hiisemann er al. 2000). Categorizing data along
dimensions is a mean to organize them into hierarchical levels so that data
can be viewed from their finer to coarser granularities (Agrawal et al. 1997).

While it has universally agreed that the implementation of data warehouse
rest on the multidimensional model, little agreement has been said on how to
carry out its conceptual design. The most popular opinion would be of using
an existing ER model whereby the model is progressively translated and
extended to include the dimensional functionality necessary in data
warehousing (Golfarelli er al. 1998, Tryfona er al. 1998, Hiisemann e al.
2000, Moody & Kortink 2000, Phipps & Davis 2002).

In this paper, we will discuss an approach and a tool for the automatic
translation of the ER model into a multidimensional model. First, we
proposed an ER specification language meant for describing the properties
and semantic structure of an ER model. Output of the translation process is
a basic multidimensional construct such as facts, measures, dimensions, and
dimension hierarchies. The basic constructs generated could be represented in
different graphical multidimensional models such as the Dimensional Fact
(DF) model (Golfarelli er al. 1998) and the Multidimensional ER (ME/R)
model (Hahn er al. 2000).

The rest of the paper is organized as follows. In Section 2 we will
overview some related works in the area of conceptual data warehouse
design. Section 3 will describe the specification of the ER language including
the entity class structure and syntax diagrams of the entity class members. In

12

Section 4 we will describe the methodology for creating the muitidimensional
model, and presents the model in form of the DFM and the ME/R model.
Conclusion and current research will be discussed in Section 5.

RELATED RESEARCH

Research works in the area of conceptual data warehouse design has been
initiated since 1998 with the works by Golfarelli er al. (1998) and Tryfona
et al. (1998). Subsequent works that directly relate to conceptual data
warehouse design are presented in Hiisemann er al. (2000), Moody &
Kortink (2000), and Phipps & Davis (2002). However, from a framework of
automated conceptual data warehouse design, we can only notice two works
that provide concise methodology and algorithms, namely the work by
Phipps & Davis (2002) and Golfarelli et al. (1998).

Phipps and Davis (2002) proposed a five-step algorithm for translating
an ER schema (represented as table data structures) into a set of ME/R schema
in tabular form, consisting of: finding entities with numeric fields and
creating fact nodes from each entity found; creating numeric attributes of
each fact node; creating date and time levels (dimensions) from the date/time
type field of each fact node; creating dimension for the remaining attributes;
and examining relationship among entities to add dimension hierarchies, The
algorithm uses numeric fields and relationships between entities as the basis
to create the ME/R schemas. Such a concept can be used with most semantic
models including the ER model.

Golfarelli et al. (1998) derived their graphical conceptual model for a
data warehouse from the ER schema based on the Dimensional Fact (DF)
model. In their work, they proposed the following steps to build the DF
model: defining facts; building attribute tree; pruning and grafting the tree;
defining dimensions: defining fact attributes; and defining hierarchies. Even
though the algorithm for the process of translating the ER scheme into the
conceptual model was not as complete and automatic as those of Phipps &
Davis (2002), they do provide some algorithms as the basis of the translation,
such as the algorithm to build attribute trees and algorithm to grafting
unwanted vertices.

The rest of the research works on conceptual data warehouse design
mentioned previously do not provide any algorithm for the translation of ER
model into conceptual model. Hiisemann et al. (2000) provided a systematic
approach to derive a conceptual schema from the global operational ER
schema to design data warehouse conceptual model. However, they emphasize
their work on obtaining data warehouse schema that is in generalized
multidimensional normal form (GMNF) and suggested three sequential phases
of conceptual data warehouse design process, namely context definition of

measures, dimensional hierarchy design, and definition of summarisability
constraints. Moody & Kortink (2000) derived their dimensional model from
typical ER data model used by operational (OLTP) systems. They divided
their method into four main steps: classify entities, identifies hierarchies,
produce dimensional models, and evaluation and refinement. As the output of
the method, they proposed various alternatives to the dimensional model such
as flat schema, terraced schema, star schema (constellation schema and
galaxy schemas), snowflake schema, and star cluster schema. Tryfona er al.
(1998) presented a set of user modelling requirements to build a conceptual
model named starER that combines the star structure and the ER model. The
input for the modelling requirements is an existing ER schema for a certain
enterprise. The modelling concepts have five stages: representing facts and
their properties; connecting temporal dimension to facts; representing objects,
capturing their properties and the associations among objects; recording the
associations between objects and facts; and distinguish dimensions and
categorize them into hierarchies.

Table 1 provides a summary of the proposed methodologies for the
conceptual design of data warehouse. As can be seen, all the methodologies
reviewed use the ER model as the basis for the conceptual design of a data
warehouse but differ in terms of the multidimensional models generated as
the output. Therefore, our decision of using an ER model in this research is
parallel with the current approaches and methodologies.

THE ER SPECIFICATION LANGUAGE

In order for a tool or system to ‘understand’ the properties and semantic
content of an ER model prior to processing, we have proposed an ER
specification language in the form of object-oriented class constructs. Three
main constructs of our ER specification language are entity, attribute and
relationship.

The entity class construct contains the specification lists of an entity
participated in the ER diagram. To make the model simple, each entity
description only keeps basic properties of an entity such as entity name,
attributes, identifier, and relationship where the entity participated. In order
to support the enhance properties of the ER model, we also include other
properties such as subclass and aggregation abstraction concepts. In general,
the structure of the entity class construct can be described as follows.

The above class construct is depicted in the form of syntax diagram as
shown in Figure 1.

As can be seen from Figure 1, the class construct starts with a keyword
CLASS followed by the class name, five class components, and ends with the
keyword END-CLASS: a new line (CrLf) character separates each component.

14

TABLE 1. Summary of proposed methodologies

Source Methodology Translation Qutput
Algorithm

Phipps & Davis * Create fact nodes yes MER

(2002) « Create numeric attributes

* (Create date/time level
* Create other level
* Add hierarchical level from

relationship
Hiisemann er al. « Define measures context no MNF
(2000) * Design dimensional hierarchy
¢ Define summarizability constraints
Moody & Kortink « Classify entities no Multidi-
(2000) « Identifies hierarchies mensional
* Produce dimensional models Schemas

« Evaluation and refinement

Tryfona et al. * Represents facts and properties no StarER
(1998) * Connect temporal dimensions
to facts

* Associates objects and properties
¢ Record association
» Categorize dimensions into hierarchy

Golfarelli el al. For each defined fact: yes DFM

(1998)

* Build attribute tree

* Pruning and grafting the tree
+ Define dimension

* Define fact attributes

« Define hierarchy

CLASS class-name

ATTRIBUTE List of attributes

IDENTIFIER List of identifiers

SUBCLASS List of subclasses

AGGREGATION List of object aggregation

RELATIONSHIP List of relationship, which consists of:

Rel-Name: Name of the relationship

Part-Obj: Participating objects in the relationship
Rel-List: List of relationship attributes
F-Constr: First participation constraint on the object side.
S-Constr: Second participation constraint on the Part-Object side.

END-CLASS

15

ATTRIBUTE NIL CrLf

Y

P Att-List

> IDENTIFIER

[df-List

» SUBCLASS

Subc-List

» AGGREGATION @ @

1 Agar-List

RELATIONSHIP

Y

Rel-List

END-CLASS

FIGURE 1. Syntax diagram of the Class construct

The class component is composed of the keyword of the component,
followed by either NIL or list of the sub-components.

The syntax diagram describing the Att-List for the ATTRIBUTE class
component is depicted in Figure 2.

The attribute list (Att-List) must be enclosed by parenthesis; either
contains at least one composite attribute, or one simple attribute. Composite
attribute is preceded by a composite name (Comp-Name) and followed by
one or more attribute specification (An-Spec) enclosed in parenthesis.

16

Att-List :

(¥ Comp-Name —>® P An-Spec >® L=®—>

Y

Att-Spec

FIGURE 2. Syntax diagram for the attribute list

Likewise, the simple attribute is just a list of one or more attribute specifi-
cation, The Art-Spec sub-component is a list of attribute name, a colon, and
a type, enclosed in parenthesis (Figure 3).

The Class-Name, Comp-Name, and Att-Name illustrated in Figure 1, 2,
and 3 respectively are of similar syntax, requiring that every name element
in the language model should be double-quoted alphanumeric characters
preceded by an alphabet (Figure 4).

The syntax diagram of the alphabet (Alpha) and digit (Digiz) in Figure
4 is shown in Figure 5(a) and (b).

The Type-Name sub-component of the Arr-Spec from Figure 3 is a list of
allowed type for an attribute. In this case. allowable types are String, Date,
Time, Integer, and Float. However, the data types are not only limited to
these types, as we can add more data types to the language by modifying the
syntax diagram and corresponding program codes. The syntax diagram for
the Type-Name construct can be seen in Figure 6.

An-Spec :

—@—P An-Name —bO—P Type-Name —P@—P

FIGURE 3: Syntax diagram for the attribute specification

Class-Name, Comp-Name, or Att-Name :

f Digit &
‘O——v Alpha L ¢O—b

FIGURE 4. Syntax diagram for class name, component name, and attribute name

Alpha:

oJolo OF

Digit:

(b)

FIGURE 5. Syntax diagram for alphanumeric characters

v

v

Type-Name:

> String —D@TP Digit j_’®—n_'

v . . .

Date Time Integer Float >

| | |

FIGURE 6: Syntax diagram showing the available data types

Using this syntax diagram, we can specify the attributes of an entity
either they have simple attributes, composite attributes, or both. The following
example illustrates how the attributes of a “PERSON" entity from a university
database (Elmasri & Navathe 2000) is constructed using syntax diagram for
the attribute list:

ATTRIBUTE (“Name” ((“Fname®: Stringl 157) ("MInit": String 3]} ("Lname”: 3tring 20000
("§sn*: Stringl 12)) (“Bdate”: Date) ("Sex": String 1]}
“Address” ({{"No”: String 4]} ("Street”: String{ 20]; (“AptNo": String 4]
(“City": Stringl 15{) ("State"; String 2]} (“Zap”: String $l 1)

The Idf-List, Subc-List, and Agg-List for the IDENTIFIER, SUBCLASS,
and AGGREGATION class components have the same syntax as shown in
Figure 7, in which the construct of the An-Name sub-component is the same
as one depicted in Figure 4.

18

Idf-List, Subc-List or Aggr-List:
—b@ P An-Name =®—'

FIGURE 7: Syntax diagram for identifier list, subclass list, or aggregation list

For example, the syntax of IDENTIFIER, SUBCLASS, and AGGREGATION
components of a “PERSON" entity can be specified as the following:

IDENTIFIER ("Ssn”)
SUBCLASS (“FACULTY" ™“STUDENT")
AGGREGATION NIL

The last component that is the RELATIONSHIP class component has five
sub-components as depicted in Figure 8. In this case, if an entity has more
than one relationship, each relationship should be listed in one line, separated
with a continuation character “\",

Rel-List:

‘@-I—@-Q Rel-Name = Part-Obj —» Rel-Att —=»{ F-Constr §-Constr

—

FIGURE 8. Syntax diagram for the relationship list

The Rel-Name and Part-Obj sub-components of the relationship list has
the same syntax as one in Figure 4, while the Rel-Arr sub-component is
described in Figure 9 with the same Azr-Spec sub-component as one depicted
in Figure 3.

Rel-Amn: " @

(T Att-Space

Y

FIGURE 9. Syntax diagram for the relationship attribute

As indicated in Figure 9, whether the RELATIONSHIP component does
not have any attribute (specified by NIL) or has a list of attributes, it should
be delimited by double quotes.

The last two sub-components of the relationship list are the F-Constr and
S-Constr stand for first constraint and second constraint, respectively. These
two components have the same syntax and are described in Figure 10.

F-Constr or S-Constr :

-.@_®—> Digit Digit —>®»—>©—b

FIGURE 10. Syntax diagram for first and second constraint of the relationship list

The F-Constr and S-Constr have a straight syntax showing no optional
paths, in which the Digir sub-component has the same syntax as one in Figure
5(b), while the SPC sub-component represents a white space character.

For example, an entity “FACULTY" with a list of five relationships can
be specified as follows:

RELATIONSHIP | (“chairs” "“DEPARTMENT" "NIL® ™{l 11" "{lL I}™\

("pelongs” “DEPARTMENT" “{(“Count”: Inzeger}}” “(I n)" ™(1 mi"}\
("pa™ “GRANT" “NIL” ™{1 mi™ {1 L")
("committee” “GRAD STUDENT" *([“MNumberQaf": Integerii” {1 n}" {1 mi"™

(“advisor” "GRAD_STUﬁENT" SNIL™ (0 f "L 17

DERIVING MULTIDIMENSIONAL MODEL
In general. our proposed translation of the ER model to multidimensional tool
consists of three main modules, namely the ER language module, the object

class module, and the multidimensional module as shown in the Figure 11.

Entiti class specifications

The ER Language
Module

Objects List | . Object Class
Module

New formatted objects

Multidimensional
Module

FIGURE 11. Main modules for EER-Multidimensional translation

The translation approach consists of three-step process conforming to the
three aforementioned modules as described in Figure 12 below.

20

* Specifications of input
o Specify input in the ER language construct
o Read the input file containing the entity classes and generate objects list.
* Processing Objects For each object in the objects list:
Specify direct superclass
o Specify indirect objects
o Reformat relationship
o Get new objects from numerical relationship attributes
o Get inhented attributes and identifiers
Reformat and classify attributes
* Creating multidimensional data model
o Select fact from the objects list
o Specify measures
o Get dimensions
o Add dimension hierarchies

=]

=]

FIGURE 12, Three-step translation process

THE ER LANGUAGE MODULE

The initial input for the translation process is an ER schema of an operational
database specified using the ER language syntax (discussed in Section 3) and
saved into an ASCII text file. The ER language module reads this file and
parses each line to obtain the name of each entity and all its properties. The
algorithm used is shown in Figure 13, where _, eof, and eoln respectively
denote an empty string, end of file, and end of line.

Algorithm ReadInputFile(E)

Input: Data set E of entity class file
whole-line _ _
while not eof (E)
a-line _ read-line(E)
if a-line g _
if eoln(a-line) is in {™")
concatenate({whole-line, substning(a-line, 0, (length(a-line) - 1)))
else
concatenate(whole-line, a-line)
a-name _ left-string (whole-line)
r-str _ right-string (whole-line)
if a-name € _
if a-name = “CLASS"
instantiate-object (r-str)
else
insert-obj-propenty (r-str, O)
whole-line _ _

Output: List of objects O

FIGURE 13. Algorithm for reading input file of the entity class

21

Each entity obtained is instantiated whereby all the properties attached
to the entity are added to the object instance, and finally all object instances
are inserted into an objects list structure. The structure of the entity object is
represented in the following Common Lisp Object System (CLOS) constructs
(Keene 1989).

(defclass EntiryObjecr ()
((name :accessor obj-name :initform nil :initarg :name)
(attribure :accessor obj-attribute :initform nil :initarg -anribure)
(identifier :accessor obj-identifier :initform nil :initarg :identifier)
(subclass :accessor obj-subclass :initform nil :initarg :subclass)
(superclass :accessor obj-superclass :initform nil :initarg 'superclass)
(aggregation :accessor obj-aggregation :initform nil :initarg ‘aggregation)
(relationship :accessor obj-relationship :initform nil :initarg :relationship))
(:documentation
“An object represents an entity. It holds the name, attributes, and its association
with other entities.”))

THE OBIECT CLASS MODULE

The main purpose of the object class module is to process the properties of
each object in the objects list to facilitate an intermediate input for the
translation process. Each object property such as attribute and relationship is
converted into an association list (in form of list of sub lists), by which the
first element of each sub list is used as a key for recovering the entire sub
lists (Winston & Homn 1989). In addition, the process also includes derivation
of other object properties such as superclass, indirect subclass, indirect
superclass, inherited attribute, and inherited identifier. The algorithm used in
this stage is shown in Figure 14.

A. SPECIFYING DIRECT SUPERCLASS

Direct superclass is obtained based on the existence of the SUBCLASS
component of an object instance. If an object has subclasses, then this object
becomes direct superclass of those subclasses. This activity is done recursively
by re-examining the existence of SUBCLASS component of each subclass
obtained earlier.

B. SPECIFYING INDIRECT OBJECTS

There are two kinds of indirect objects, i.e. indirect subclass and indirect
superclass. To specify the indirect subclass of an object, first we have to
check if the object has a subclass. If the subclass exists, then we recursively

-3
(5]

check the subclass of this subclass. Likewise, to specify indirect superclass,
the superclass of the object is initially checked. If the superclass exists, then
the superclass of this superclass is checked recursively. The indirect objects
are a collection of subclass and superclass obtained in this manner.

Algorithm ProcessObject(O)
Input: Data Set 0 = {0 | =/, ... n]

for each 0 € O
SpecifyObjectSuperclass(o)
SpecifylndirectObject(o,)
ReformatRelationship(o)

let N <@, where N = [n |j=0,...pi p<n| of new objects
letm={m | k=0,.. g q<n}] list of new object name from relationship

for each o € O
m « GetObjectFromRelationship(o)
ifme @
for each m € m

new-art «— GetNewAtribute(m,, o)
obj-id + GetNewldentifier(parr-obj)
part-obj « GetParucipatingObject(m,, o)
new-constr « SetRelConstraini(m,, o)
new-rel « SetNewRelationship(new-constr. part-obj)
InstantiateNewObject (m,); Add m, to N.
ModifyOldObject(o)

O «~0 uN

for each 0, € O
AddlnheritedAtiribute(o,)

AddInheritedldentifier(o)
ReformatAttribute(o)

ClassifyAttribute(o)

Output: Modified set of objects list O

FIGURE 14. Algorithm for processing objects in the objects list

C. REFORMATTING RELATIONSHIP

The relationship properties are obtained from the relationship of each object
in the objects list. The purpose of reformatting the relationship is to convert
all its subcomponents into association lists. The first part of the association
list is the name of the subcomponent and the second part is its value.

23

D. EXTRACTING NEW OBJECTS FROM NUMERICAL RELATIONSHIP ATTRIBUTES

A new object could be added to the objects list originating from a relationship,
namely a relationship that has numeric attributes. Such relationship is
converted into an object by giving the name of the relationship as the name
of the new object. As a result of this conversion, the new object and the
corresponding objects participated in the relationship need further processing.
For the new object, its attributes are derived from the relationship attributes
and its identifiers are the combination of the identifiers of the participating
objects. If the relationship is a many-to-many relationship, the relationship is
split into two many-to-one relationships with the new object in the many
side. Each participating objects get a new relationship with the new object
and the new relationships are given a default name “of “.

E. EXTRACTING INHERITED ATTRIBUTES AND [DENTIFIERS

If an object has one or more superclass, then its attributes are the union of
its attributes and the attributes of its superclass. The attribute of the object
can be obtained using the obj-attribute accessor function of the EntityObject
class, whereas the inherited attributes are acquired from the attributes of its
superclass. The identifiers of an object are obtained in the same manner.

F. REFORMATTING AND CLASSIFYING ATTRIBUTES

There are two activities performed in this step: reformatting auributes and
classifying the attributes according to their types. First, attributes of an object
are reformatted in the form of association lists. The first part of the
association list is the name of the attribute and the second part is the domain
auribute type. If the attribute is a composite attribute, then the composite
attributes are reformatted by associating a word “Composite” in front of the
composition name to indicate the beginning of the composite attributes and
an association list (“Composite” . “End™) is inserted to indicate the end of the
composition. Next, the new formatted attributes are classified into three
categories; numeric attributes, temporal attributes, and other attributes.
Numeric attributes are from a domain of numbers such as integer or float;
temporal attributes are from the date and time domain; and other attribute is
commonly attributes from the string domain.

The object class module delivers an intermediate output containing all
objects obtained from the entity class file with new formatted properties.
Given below is a portion of the intermediate output resulted from this
module.

24

Object name: PERSON
Attribute(s):
Numeric Attribute(s): NIL
Date Atribute(s):
(Bdate . Date)
Other Attribute(s):
(Composite . Name)
(Fname . String[15])
(MInit . String[3])
(Lname . String[20])
(Ssn , String[12])
(Sex . Sing[1])
(Composite . Address)
(No . String[4])
(Street . String[20])
(AptNo . String[4])
(City . String[15])
(State . Swring(2])
(Zip . String[5])
Identifier(s): ((*Ssn"))
Direct Subclass(es): (“FACULTY" “STUDENT"™)
Indirect Subclass(es):
("“GRAD_STUDENT")
(*“MASTERS_STUDENT")
(“"PHD_STUDENT™)
Direct Superclass(es): NIL
Indirect Superclass(es): NIL
Aggregation(s): NIL
Relationship(s): (NIL)

THE MULTIDIMENSIONAL MODULE

The multidimensional module is a module that produces the basic constructs
of the multidimensional model such as facts, measures, dimensions, and
dimension hierarchies. Input to this module is a list of objects with formatted
properties resulted from the object module. The methodology for creating
multidimensional model consists of four steps: deriving facts from the objects
list, specifying measures, getting dimensions, and adding dimension hierarchies
(Figure 15).

25

Algorithm CreateDimensionalModel(O)
Input: A list of objects O = (o |i = [, ..., n}

let L, _ @ where L =/ |j=1, ...m msnj of facts assoc. lisl
if O ¢ NIL
for each o € O
cr-num _ CountNumericalAttributes (o,)
if (ct-num > 0)
c-node _ obj-name (o)
cons (c-node, ct-num)
append c-node into L,
sort L, descending on ct-num

let F _ @, where F={ f, | k=1, ...m m<n| of fact objects

for each | € L,
I _ first part of association list /
J, — instantiate-fact-object (i)
num-att _ SpecifyMeasures (f)
obj-num-att (f,) _ num-att
obj-fact-dim (f,) _ GetDimensions (obj-name f)
obj-hierarchy (f,) _ AddDimHierarchy (obj-name f,)
Append f, into F OQutput: F

FIGURE 15. Algorithm for creating muitidimensional data model

A. DERIVING FACTS

Facts are focus of analysis in multidimensional model and characterized by
properties, which are usually numerical data, and can be summarized (or
aggregated) to extract further information (Tryfona ez al. 1998). Referring to
this, facts for the multidimensional model are selected based on whether an
object has numeric attributes or not. Since each object has a numerical
attribute classification for its attribute, the selection of fact becomes trivial.
Each fact obtained in this step is inserted into a list of fact-objects class called
FactObject, which is a subclass of the EntityObject class with the following
structure,

(defclass FaciObject (EntityObject)
((measure :accessor obj-fact-measure :initform NIL :initarg ‘measure)
(dimension :accessor obj-fact-dim :initform NIL :initarg :dimension)
(dim-hierarchy :accessor obj-dim-hierarchy :initform NIL :initarg :dim-hierarchy))
(:documentation
“A fact object is a candidate for a fact node. It keeps the numenc attributes
(measures),
dimensions, and dimension hierarchies.”))

In addition, as suggested by Phipps and Davis (2002) the count of
numeric attributes an object has could be regarded also as a feature in
determining which object would most likely be chosen as a fact; so each
chosen fact inserted into the list of facts is sorted in descending order based
on the count of its numerical attributes. The rationale for this sorting is that
the greater the count of the numerical attributes, the most likely that the
object is chosen as a fact.

B. SPECIFYING MEASURES

Measures are the summary properties of a fact and could be acquired from
the numeric attributes of the EntityObject class. Since the fact object is a
subclass of the entity object class, the attributes of the object could be
accessed using the obj-artribute accessor function of the EntiryObject class
by which a list of attributes (including inherited attributes) in forms of
association list is obtained. Next, the type of each attribute is checked from
the second part of the association list to see whether it is a numeric attribute.
Finally, each numeric attribute obtained is added to the measure of the fact
object using the obj-fact-measure accessor function of the FactObject class.

C. EXTRACTING DIMENSIONS

Dimensions are chosen among the attributes of an object, which has been
classified into three categories as previously described. Among the three
categories, only remporal and orher categories that will be used for dimensions,
because numeric category has been used as measures of the fact. Temporal
dimension is considered a very important dimension in data warehouse as
this dimension could provide a view of the evolution of data over a specified
time range. For this reason, it is necessary that each fact should have the
time/date as one of its dimensions. Other dimension is also crucial for the
design of data warehouse because they represent different point of view of
the fact being considered. However, it is not all of the orher attributes could
be added as dimensions, some of these attributes need to be pruned and
grafted because aggregating them into different granularities may not give
any significant contribution to the view of multidimensional data (Golfarelli
er al. 1998). Another attribute that may not give significant contribution is
what so called non-dimensional attributes and most likely those attributes are
having a domain attribute of type string.

D. ADDING DIMENSION HIERARCHIES

In addition to the dimensions obtained in previous step, additional dimensions
could be added from relationships, superclass, and aggregations. These
dimensions will contribute to the creation of dimension hierarchies of the

27

multidimensional model. Objects are added to the dimension hierarchies
based on the existence of many-to-one relationships amongst objects. The
first level of the hierarchy is created whenever a many-to-one relationship
exists between a fact object and another object (where the many side is on
the fact object). If the object has many-to-one relationship with another
object, then the other object is also added to the existing hierarchy. This step
is done recursively until there is no other many-to-one relationship exists for
the newly added object. Dimension hierarchy could also be added from
superclasses of a fact object in which the direct superclass of the fact object
is added to the first level of the hierarchy and inserting each subsequent
indirect superclass in different hierarchy level, correspondingly. In case
where a fact object has some aggregation objects, a new dimensional
hierarchy could also be created. In this case, each component object of the
aggregation is placed at the same hierarchy level.

COURSE ' M secmion P teach

M | I
<> 0 INSTRUCTOR
RESEARCHER
| |M
DEPARTMENT TRANSCRIPT
M
<¢> FACULTY GRAD_STUDENT
I
COLLEGE

FIGURE 16, Portion of ER diagram for a *SECTION" object

To assist understanding of the previously described process of the
multidimensional module, consider an object called “SECTION" emanated
from a university data base of Elmasri and Navathe (2000), which participates
in two many-to-one relationships and one one-to-many relationship as shown
below.

(Name . cs)
(Participating-obj . COURSE)
(Rel-Attribute . NIL)
(First-constraint . (1 1))
(Second-constraint . (1 n))
(Name . teach)
(Participating-obj . INSTRUCTOR_RESEARCHER)
(Rel-Attraibute . NIL)
(First-constraint . (1 1))
(Second-constraint . (1 n))
(Name . of)
(Participating-obj . TRANSCRIPT)
(Rel-Attribute . NIL)
{First-constraint . (1 m))
(Second-constraint . (1 1))

A portion of the ER diagram showing this relationship is shown in Figure 16.

From the three relationships, only those with many-to-one relationships
will be added to the dimension hierarchy, namely the “COURSE" and the
“INSTRUCTOR_RESEARCHER" objects, whereas the “TRANSCRIPT" object
is not included. The “COURSE" object also has many-to-one relationship with
the “DEPARTMENT" object and this object has a many-to-one relationship
with the “COLLEGE" object, so the algorithm recursively includes the two
objects into the dimension level. In case of the “INSTRUCTOR_RESEARCHER"
object, it does not have further many-to-one relationship but it has two
aggregation objects instead, namely “FACULTY"” and “GRAD_STUDENT".
These two objects are added to the dimension at the same level. Result of this
process is two dimension levels for the “SECTION™ object.

After completing all four steps in multidimensional module, we have a
set of fact scheme for the “SECTION" fact as shown below.

Fact Node: ™SECTION”
Measure (s} :
|Year . Integer)
Dimensions:
Temporal Dimension:
NIL
Other Dimension:
Sect#
Qtr
Hierarchical Level:
“INSTRUCTOR_RESEARCHER”
“FACULTY”
"GRAD_STUDENT"
“COURSE"
“DEPARTMENT"
"COLLEGE"”

29

The fact scheme for the “SECTION" fact can be represented in graphical
model such as the ME/R model from Hahn, Sapia & Blaschka (2000) and the
DF model from Golfarelli, Maio & Rizzi (1998). The resulting graphical
multidimensional model in form of DF model and ME/R diagram can be seen
in Figure 17 and Figure 18, respectively,

Faculty Grad_Student

Instructor_Researcher

Section
sect# (O Year b—o-o- Qr

O

Course Department College

FIGURE 17: Dimensional Fact Model for “SECTION" fact

Faculty Grad_Student

=

Instructor_Researcher

Qtr Sect#

Course p Department p College

FIGURE 18: ME/R model for the “SECTION" fact

30

CONCLUSION AND CURRENT RESEARCH WORK

In this paper we have proposed an approach for automating the translation
process of an ER model into a multidimensional model. The proposed
automated approach is implemented according to three modules: the ER
language module, the object class module, and the multidimensional module.
As to date, the approach only produced an initial multidimensional data
model in the form of basic multidimensional constructs such as facts,
measures, dimensions, and dimension hierarchies. Our current research work
has been focused towards constructing a module for enhancing and refining
the basic multidimensional data model by incorporating refinement elements
such as grafting and pruning attributes; inserting additional dimensions such
as time dimension; revising measures or facts; and choosing an appropriate
fact. Techniques from the field of artificial intelligence (AI) may be a fruitful
direction towards implementing the aforementioned elements as has been
achieved within the context of database analysis and design (Noah and
Williams 1998 & 2000).

REFERENCES

Agrawal, R., Gupta, A. and Sarawagi, S. 1997, Modeling multidimensional databases.
Proceedings of the 13" International Conference On Data Engineering (ICDE'97).
Birmingham, U.K: 232-243,

Chaudhuri, S. and Dayal, U. 1997. An overview of data warehousing and OLAP
technology. ACM SIGMOD Record 26(1): 65-74.

Elmasri, R. and Navathe, S. B. 2000. Fundamentals of Database Systems. 3 Edition.
Addison-Wesley: Reading, MA.

Golfarelli, M., Maio, D. and Rizzi, S. 1998, Conceptual design of data warehouses
from E/R schemes. Proceedings of the Hawaii International Conference on
System Sciences VII. Kona, Hawaii: 334-343,

Hahn, K., Sapia, C. and Blaschka, M. 2000. Automatically generating OLAP
schemata from conceptual graphical models. Proceedings of the 3™ International
Workshop on Data Warehousing and OLAP (DOLAP, in connection with
CIKM). Washington D.C.: 9-16.

Hiisemann. B., Lechtenborger, J. and Vossen G. 2000. Conceptual data warehouse
design. Proceedings of the International Workshop on Design and Management
of Data Warehouse (DMDW '2000). Stockholm, Sweden: 6-1 - 6-11.

Keene. S. E. 1989. Object-Oriented Programming in Common LISP: A Programmer's
Guide ro CLOS. Addison-Wesley: Reading, MA.

Kimbal, R. 1997. A dimensional modeling manifesto: Drawing the line between
dimensional modeling and ER modeling techniques. DBMS Online 10(9): 59.

Moody, D. and Kortink, M.A.R. 2000. From enterprise models to dimensional
models: A methodology for data warehouse and data mart design. Proceedings
of the International Workshop on Design and Management of Data Warehouses
2000 (DMDW'2000). Stockholm, Sweden: 5-1 - 5-12.

31

Noah, S. A. and Williams, M. 1998. An evaluation of two approaches to exploiting
real-world knowledge by intelligent database design tools. Proceedings of the
I7* International Conference on Conceptual Modelling, Singapore. Springer-
Verlag, Berlin: 197-210.

Noah, S. A. and Williams, M. 2000. Exploring and validating the contributions of
real-world knowledge to the diagnostic performance of automated database
design tools. Proceedings of the Fifteenth IEEE International Conference on
Automated Software Engineering (ASE 2000). Grenoble, France:177-185.

Phipps, C. and Davis, K. C. 2002. Automating data warehouse conceptual schema
design and evaluation. Proceedings of the 4" International Workshop on Design
and Management of Data Warehouses 2002 (DMDW'2002). Toronto, Canada:
23-32.

Samtani S., Mohania, M., Kumar, V. and Kambayashi, Y. 1998. Recent advances and
research problems in data warehousing. Proceedings of the International
Workshop on Data Warehousing & Data Mining, Mobile Data Access, and New
Database Technologies for Collaborative Work Support & Spatio -Temporal
Data Management. Singapore: 81-92,

Sapia. C., Blaschka. M., Héfling, G. and Dinter, B. 1998. Extending the E/R model
for the multidimensional paradigm. Proceedings of the I International
Workshop on Data Warehousing and Data Mining (DWDM 98). New York,
N.Y.: 105-116.

Tryfona, N., Busborg, F. and Christiansen, J. G. B. 1999. starER: A conceptual model
for data warehouse design. Proceedings of the ACM 2" [nternational Workshop
on Data Warehousing and OLAP. New York, N.Y.: 3-8,

Widom, J.. 1995. Research Problems in Data Warehousing. Proceedings of the 4"
International Conference on Information and Knowledge Management (CIKM).
Baltimore, Maryland: 25 - 30.

Winston, P. H. and Homn, B. K. P. 1989. LISP. 3 Edition. Addison-Wesley: Reading.
MA.

MAKLUMAT PENGARANG

Opim Salim Sitompul & Shahrul Azman Mohd Noah
Department of Information Science

Faculty of Information Science & Technology
Universiti Kebangsaan Malaysia

43600 Bangi. Selangor, Malaysia
05519877 @ fism.ukm.my, samn@ftsm.ukm.my

32

