Comparison of Landsat 8, Sentinel-2 and spectral indices combinations for Google Earth Engine-based land use mapping in the Johor River Basin, Malaysia
Abstract
Accurate land use information is the basis for scientific research related to carbon cycle analysis, hydro-climatic modelling, soil degradation assessment, etc. It is also an indispensable basic information for local land management departments in land use planning and management. With development in big data and internet network, Google Earth Engine (GEE), a cloud-based computing platform allows users to perform satellite images processing more efficiently. This study aims to improve the land use mapping in a tropical region based on the GEE platform. Seven satellite images and indices combinations include Landsat 8 (C1), Sentinel-2 (C2), Landsat 8+Sentinel-2 (C3), Landsat 8+Indices (C4), Sentinel-2+Indices (C5), Landsat 8+Sentinel-2+Indices (C6), Normalized Difference Vegetation Index (NDVI)+Normalized Difference Water Index (NDWI)+Enhanced Vegetation Index (EVI)+Elevation (C7) were developed to evaluate the best combination for land use mapping in the Johor River Basin (JRB), Malaysia. The Random Forest (RF) algorithm was used to classify the land use land cover (LULC) with 222 training samples and 78 verification samples obtained through the Google Earth Pro higher resolution satellite images and field samplings. The results show that the overall accuracies of all the seven combinations are mostly more than 75%, ranging from 72% (C1) to 86% (C6). The findings show that adding of additional indices information before the land use classification helps to increase the overall accuracy significantly. For instance, the overall accuracy of the C6 combination is 14% higher than that of the Landsat 8 image solely. This study can act as a reference to effectively improve the land use mapping in cloud-prone tropical regions.
Keywords: Google Earth Engine, Image combination, Johor River Basin, Land Use, Malaysia, Random Forest
Keywords
Full Text:
PDFReferences
Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Ash’aari, Z. H. (2015). Measuring Land Cover Change in Seremban, Malaysia Using NDVI Index. Procedia Environmental Sciences, 30, 238-243.
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., . . . Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31.
Carrasco, L., O’Neil, A. W., Morton, R. D., & Rowland, C. S. (2019). Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sensing, 11(3), 288.
De Alban, J., Connette, G., Oswald, P., & Webb, E. (2018). Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sensing, 10(2), 306.
de Sousa, C., Fatoyinbo, L., Neigh, C., Boucka, F., Angoue, V., & Larsen, T. (2020). Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon. PLoS One, 15(1), e0227438.
Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., . . . Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390.
Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2018). Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing, 55(3), 331-354.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.
Gyamfi-Ampadu, E., Gebreslasie, M., & Mendoza-Ponce, A. (2020). Mapping natural forest cover using satellite imagery of Nkandla forest reserve, KwaZulu-Natal, South Africa. Remote Sensing Applications: Society and Environment, 18, 100302.
Jin, Y., Liu, X., Chen, Y., & Liang, X. (2018). Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong. International Journal of Remote Sensing, 39(23), 8703-8723.
Johnson, B. A., & Iizuka, K. (2016). Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Applied Geography, 67, 140-149.
Korhonen, L., Hadi, Packalen, P., & Rautiainen, M. (2017). Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 195, 259-274.
Li, Q., Qiu, C., Ma, L., Schmitt, M., & Zhu, X. (2020). Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote Sensing, 12(4), 602.
Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., & Qiao, Z. (2020). Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 239, 111624.
Liu, P. (2015). A survey of remote-sensing big data. Frontiers in Environmental Science, 3, 45.
Mandanici, E., & Bitelli, G. (2016). Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sensing, 8(12), 1014.
Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors, 7(11), 2636-2651.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6, 67-78.
Nguyen, L. H., Joshi, D. R., Clay, D. E., & Henebry, G. M. (2020). Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sensing of Environment, 238, 111017.
Oliphant, A. J., Thenkabail, P. S., Teluguntla, P., Xiong, J., Gumma, M. K., Congalton, R. G., & Yadav, K. (2019). Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. International Journal of Applied Earth Observation and Geoinformation, 81, 110-124.
Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sensing, 12(15), 2411.
Pohl, C., & van Genderen, J. L. (1998). Review article Multisensor image fusion in remote sensing concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823-854.
Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., San Aung, K., Chishtie, F., & Saah, D. (2019). Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification. Remote Sensing, 11(7), 831.
Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sensing, 13(4), 586.
Roy, D. P., Wulder, M. A., Loveland, T. R., C.E, W., Allen, R. G., Anderson, M. C., . . . Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154-172.
Sarzynski, T., Giam, X., Carrasco, L., & Lee, J. S. H. (2020). Combining Radar and Optical Imagery to Map Oil Palm Plantations in Sumatra, Indonesia, Using the Google Earth Engine. Remote Sensing, 12(7), 1220.
Scheffler, D., Frantz, D., & Segl, K. (2020). Spectral harmonization and red edge prediction of Landsat-8 to Sentinel-2 using land cover optimized multivariate regressors. Remote Sensing of Environment, 241, 111723.
Shaharum, N. S. N., Shafri, H. Z. M., Ghani, W. A. W. A. K., Samsatli, S., Al-Habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 17, 100287.
Sidhu, N., Pebesma, E., & Câmara, G. (2018). Using Google Earth Engine to detect land cover change: Singapore as a use case. European Journal of Remote Sensing, 51(1), 486-500.
Sothe, C., Almeida, C., Liesenberg, V., & Schimalski, M. (2017). Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sensing, 9(8), 838.
Tan, M. L., Chua, V. P., Li, C., & Brindha, K. (2019). Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia. Theoretical and Applied Climatology, 135(3), 825-837.
Tan, M. L., Ibrahim, A. L., Yusop, Z., Duan, Z., & Ling, L. (2015). Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrological Sciences Journal, 60(5), 873-889.
Tew, Y. L., Tan, M. L., Samat, N., & Yang, X. I. A. O. Y. I. N. G. (2019). Urban Expansion Analysis using Landsat Images in Penang, Malaysia. Sains Malaysiana, 48(11), 2307-2315.
Topaloğlu, R. H., Sertel, E., & Musaoğlu, N. (2016). Assessment of Classification Accuracies of Sentinel-2 and Landsat-8 Data for Land Cover / Use Mapping. International archives of the photogrammetry, remote sensing & spatial Information Sciences, 41.
van der Meer, F. D., van der Werff, H. M. A., & van Ruitenbeek, F. J. A. (2014). Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124-133.
Vijith, H., & Dodge-Wan, D. (2020). Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications: Society and Environment, 18, 100311.
Wulder, M. A., Franklin, S. E., White, J. C., Linke, J., & Magnussen, S. (2006). An accuracy assessment framework for large‐area land cover classification products derived from medium‐resolution satellite data. International Journal of Remote Sensing, 27(4), 663-683.
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033.
Refbacks
- There are currently no refbacks.