Comparison of the distribution maps for drug addict hotspot in Selangor using different spatial analysis tools
Abstract
The problem of drug addiction in Malaysia is worsening and causes harm to the well-being of the population of Malaysia. A report published in 2018 states that 133,684 or 0.4% of the Malaysian population are drug addicts. Furthermore, 56% of all inmates in the federal prison are locked-up because of drug-related offences. This study aim is to identify the hotspots for drug addicts in Selangor, Malaysia. This study uses three geostatistical techniques, kernel density estimation (KDE), Getis-Ord Gi*, and IDW to map the hotspots for drug addicts. The National Anti-Drug Agency (NADA) provides the data for this study which consists of 2997 cases of drug addict under supervision (DAUS) in 2016. The data are analysed using ArcGIS Pro 2.4 software. The individual DUAS represents a point vector data format with WGS 1984 Web Mercator projection. Hotspot analysis is performed using kernel density estimation (KDE), Getis-Ord Gi* and IDW. The results show eight statistically significant hotspots for drug addicts in the sub-districts (99% confidence level and p-value < 0.001). The locations with significant hotspots for drug addicts are Bandar Serendah, Pandamaran, Bandar Klang, Bandar Kajang, Dengkil, Bandar Ampang, Bandar Damansara, and Semenyih sub-districts. This study provides spatial information that helps law enforcement agencies identify drug hotspot areas and use this information to create and enhance a defensible safe neighbourhood. The outcome of this study facilitates law enforcement through better strategic planning for reducing drug addict hotspot areas.
Keywords: drug addicts, drug hotspots and mapping, geographical information system (GIS), Getis-ord Gi*, inverse distance weighted (IDW), kernel density estimation analysis (KDE)
Full Text:
PDFReferences
Astro Awani. (2019). Ketagihan dadah, jika tidak dibendung, negara kerugian tenaga belia. Retrieved from http://www.astroawani.com/berita-malaysia/ketagihan-dadah-jika-tidak-dibendung-negara-kerugian-tenaga-belia-muhyiddin-206498.
Bernama. (2019). AADK sasar 33 kawasan bebas dadah menjelang akhir tahun ini. Retrieved from http://www.bernama.com/bm/news.php?id=1699854.
Berita Harian. (2018). Pahang, Kelantan, Terengganu, Perlis paling ramai penagih dadah. Retrieved from https://www.bharian.com.my/berita/nasional/2018/11/497259/pahang-kelantan-terengganu-perlis-paling-ramai-penagih-dadah.
Brantingham, P.J., & Brantingham, P.L. (1984). Patterns in crime. New York: Macmillan.
Boba, R.S. (2016). Crime Analysis with Crime Mapping, 4th Ed. Sage Publications, Inc, Thousand.
Oaks, California.
Chainey, S., & Ratcliffe, J. (2005). GIS and crime mapping. Mastering GIS: Technology, Applications and Management. John Wiley & Sons. England.
Chainey, S.P., Reid, S., & Stuart, N. (2002). When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime. Innovations in GIS 9. London: Taylor & Francis.
Chainey, S. (2013). Examining the influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting spatial patterns of crime. Bull. Geogr. Soc. Liege, 60: 7-19.
Chan Y.F, Nor Aizam A. (2018). Using Geographical Information System to Identify High-Risk Areas of Substance Abuse in Malaysia. Jurnal Antidadah Malaysia.
Eck, J., Chainey, S.P., Cameron, J., & Wilson, R. (2005). Mapping crime: Understanding hotspots. Washington DC: National Institute of Justice.
Esri. (2019). How kernel density works.
Retrieved from https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm.
Fazillah, A., Juahir, H., Toriman, E., Mohamad, N., & Mohamad, M. (2017). Combating substance abuse with the potential of geographic information system combining multivariate analysis. J. Fundam. Appl.Sci. 9(2S), 485-504.
Gill, C. Vitter, Z. & Weisburd, D. (2015). Identifying Hot Spots of Juvenile Offending: A Guide for Crime Analysts. Retrieved from https://ric-zai-inc.com/Publications/cops-p298-pub.pdf
Gorr, W. L., & Kurtland, K. S. (2012). GIS tutorial for crime analysis. Esri Press. Redlands. California. USA.
Jefferis, E. (1999). A multi-method exploration of crime hot-spots: A summary of findings. Crime Mapping Research Centre intramural project. Washington, DC: National Institute of Justice.
Kalinic, M., & Krisp, J. (2018). Kernel Density Estimation (KDE) vs. Hot-Spot Analysis - Detecting Criminal Hot Spots in the City of San Francisco. Conference: Agile 2018 - 21st Conference on Geo-information Science, At Lund, Sweden. Retrieved from https://www.researchgate.net/publication/325825793_Kernel_Density_Estimation_KDE_vs_Hot-Spot_Analysis_ _Detecting_Criminal_Hot_Spots_in_the_City_ of_San_Francisco.
Leigh, J.M. Dunnett, S.J. & Jackson, L.M. (2016). Predictive policing using hotspot analysis. Int.
Multi-Conf. Eng. Comput. Sci. (IMECS 2016), 16-18 March 2016, Hong Kong.
Malaysia. (2012). Drug Dependants (Treatment and Rehabilitation) Act 1983 (Act 283).
Malaysia. Anti Narcotics Task Force. (1992). Dadah (illicit drugs) : what you need to know / Anti Narcotics Task Force. National Security Council. Prime Minister's Department. Kuala Lumpur : Delmu (Malaysia).
NADA. (2017). Maklumat Dadah 2017. Retrieved from https://www.adk.gov.my/wp-content/uploads/Terkini-Maklumat-Dadah-2017.pdf.
Silverman, B.W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.
Tarmiji, M., & Usman, Y. (2012). Population and spatial distribution of urbanisation in Peninsular Malaysia 1957-2000. Geografia-Malaysian Journal of Society and Space, 8(2), 20-29.
Toriman, M. E., Abdullah, S. N. F., Azizan, I. A., Kamarudin, M. K. A., Umar, R., & Mohamad, N. (2015). Penilaian ruang dan masa terhadap penagihan dadah menggunakan analisis multivariat dan GIS. Malaysian Journal of Analytical Sciences, 19(6), 1361-1373.
United Nation. (2018). Bulletin on Narcotics. Alternative development: practices and reflections. Vol. LXI, 2017. 75-130. Office on Drugs and Crime (UNODC). Vienna International Centre. Austria.
United Nation. (2007). Types of Drugs under International Control. Office on Drugs and Crime (UNODC). Retrieved from https://www.unodc.org/pdf/typesofdrugs/pdf.
Utusan Malaysia. (2017). Gejala dadah makin membimbangkan. Retrieved from https://www.utusan.com.my/berita/nasional/gejala-dadah-makin-membimbangkan-1.493419.
Refbacks
- There are currently no refbacks.