Perancangan dan pengujian pemindahan pengguna melalui simulasi tindakbalas kecemasan 3D (Planning and evaluation of user evacuation through 3D emergency response simulation)

Syed Ahmad Fadhli Syed Abdul Rahman, Khairul Nizam Abdul Maulud, Sharifah Nurul Ain Syed Mustorpha

Abstract


Proses pemindahan pengguna ketika situasi kecemasan amat penting seiring dengan pembangunan struktur bertingkat yang mampan. Proses memindahkan pengguna adalah mencabar kerana melibatkan perkara-perkara luar kawalan seperti tingkahlaku pengguna dan faktor dinamik kemalangan. Kajian ini dilaksanakan bagi merancang dan menguji proses pemindahan pengguna didalam persekitaran 3D. Ia merangkumi tiga fasa iaitu fasa integrasi data, pembangunan dan pengujian topologi dan analisa simulasi. Pengujian kaedah integrasi model 3D BIM kepada 3D GIS dilakukan dengan menggunakan kaedah Revit ke Feature Manipulation Engine (FME) dan seterusnya ke Multipatch Shapefile dipilih sebagai kaedah terbaik kerana memenuhi keperluan analisa kecemasan. Seterusnya, jaringan topologi kekisi dibina dan diuji melalui ujian ketersediaan dan ujian ketepatan. Purata kadar ketersediaan akses dikenalpasti melebihi 12% manakala purata keralatan dikenalpasti sebanyak 3.18%. Pengiraan jarak ke akses keluar dan saiz kekisi 0.38m digunakan sebagai input parameter dalam fasa ketiga. Tiga parameter digunakan iaitu kelajuan, kapasiti pengguna dan pemilihan akses diuji dalam lapan simulasi yang berbeza. Hasil simulasi diperincikan kedalam dua faktor iaitu masa dan ruang kritikal. Faktor masa mengupas kesan kapasiti pengguna dan pemilihan akses terhadap masa. Kesan kapasiti pengguna didapati semakin besar apabila tempoh masa pemindahan pengguna bertambah. Kaedah pembahagian akses dikenalpasti sebagai kaedah terbaik untuk memindahkan pengguna dengan purata 17% lebih pantas berbanding kaedah lain. Faktor ruang kritikal melibatkan pengenalpastian ruang kritikal didalam bangunan melalui peta haba dan teori Level of Service. Pengenalpastian ruang kritikal dikenalpasti berpunca daripada akses yang berkelebaran kurang dari 1.5 meter bagi setiap aras. Pengujian pelebaran akses diuji dan dibuktikan mampu menambahbaik aliran pemindahan pengguna dalam kajian ini.

Kata kunci: 3D, akses, BIM, GIS, kecemasan, topologi

The process of evacuating users in emergency management is very important, in line with the development of a sustainable multi-level structure. It is challenging because they are tied to things beyond control such as user behavior and dynamic factors of an accident. This study is conducted to design and evaluate the user evacuation process in a 3D environment. It involves three phases namely data integration phase, topology development and testing, and simulation analysis. Methods of integrating 3D BIM models into 3D GIS were tested and the integration method from Revit to Feature Manipulation Engine (FME) to Multipatch Shapefile was chosen as the best method because it met the needs of emergency analysis. Next, the topology network is developed and tested through availability and accuracy test. The average availability access is more than 12% while the error rate detected is 3.18%. The distance measured for the nearest exit and the 0.38m lattice size is used as a parameter input in the third phase. Three parameters namely speed, user capacity and access selection were tested in eight different simulations. The simulation results are summarized into two factors: time and space critical. Time factors elaborate on the impact of user capacity and selection of access towards time. The effect of user capacity would be greater as the duration of user evacuation increases. The divide access method was identified as the best way to evacuate users on average of 17% faster than other methods. Critical space factors discussed the identification of critical spaces through heat maps and the Level of Service theory. The critical spaces were identified due to access with less than 1.5 meters width at each level. Through access widening testing has proven can improve user evacuation flow in this study.

Keywords: 3D, access, BIM, emergency, GIS, topology


Full Text:

PDF

References


Abdul Rahman, S.A.F.S. & Abdul Maulud, K.N. (2019). Approaching BIM-GIS integration for 3D evacuation planning requirement using multipatch geometry data format. IOP Conference Series: Earth and Environmental Science, 385, 012033.

Abdul Rahman, S.A.F.S., Abdul Maulud, K.N., Syed Mustorpha, S.N.A & Abdul Halim, N.Z. (2020). Implication of pre-evacuation time based on 3D evacuation simulation by integrated BIM and GIS. International Journal of Advanced Science and Technology, 29(05), 6988-7002.

Banerjee, A., Maurya, A. K., Lammel, G. (2018). Pedestrian flow characteristics and level of service on dissimilar facilities: A critical review. Journal of Collective Dynamics, 4.

Campisi, T., Canale, A., Tesoriere, G., Lovric, I. & Čutura, B. (2019). The importance of assessing the level of service in confined infrastructures: some considerations of the old ottoman pedestrian bridge of mostar. Applied Sciences, 9(8), 1630.

Ciflikli, C. & Oner Tartan, E. (2019). A model for the visualization and analysis of elevator traffic. Transportation Planning and Technology, 1–13.

Ding, N., Chen, T. & Zhang, H. (2016). Simulation of high-rise building evacuation considering fatigue factor based on cellular automata: A case study in China. Building Simulation, 10(3), 407–418.

Fruin, J.J. (1971). Designing for pedestrians: a level of service concept, Washington: Transportation Research Board Business Office.

Jabatan Bomba dan Penyelamat Malaysia. (2018). Garis Panduan Keselamatan Kebakaran di Premis Perhimpunan Awam. Diambil daripada http://www.bomba.gov.my/index.php/pages/view/146

Ji, J., Meng, Y., Li, Q. & Yang, S. (2014). Study on factors affecting evacuation capability of a fire-protection walk in underground buildings. Procedia Engineering, 71, 357–363.

Joseph, K.B. (2002). Map Analysis, Understanding spatial patterns and relationships, 18, 26-27.

Kadali, R.B & Vedagiri, P. (2016). Review of the pedestrian level of service: Perspective in developing countries. Transp. Res. Rec. J. Transp. Res. Board, 2581, 37–47.

Kadir, A., Abudin, R. & Razman, M.R. (2019). Penilaian iklim keselamatan persekitaran kerja terhadap komuniti kakitangan kerajaan di Putrajaya. Geografia-Malaysian Journal of Society and Space, 15.4.

Kneidl, A., Borrmann, A. & Hartmann, D. (2012). Generation and use of sparse navigation graphs for microscopic pedestrian simulation models. Advanced Engineering Informatics, 26(4), 669–680.

Li, X., Claramunt, C. & Ray, C. (2010). A grid graph-based model for the analysis of 2D indoor spaces. Computers, Environment and Urban Systems, 34(6), 532–540.

Lin, W.Y. & Lin, P.H. (2018). Intelligent generation of indoor topology (i-GIT) for human indoor pathfinding based on IFC models and 3D GIS technology. Automation in Construction, 94, 340-359.

Lundstrom, F.V., Ahlfont, J. & Nilsson, D. (2014). The effect of raised walkway design on evacuation behavior in rail tunnels. Fire Saf. Sci, 11, 1091–1102.

Minegishi, Y. & Takeichi, N. (2018). Design guidelines for crowd evacuation in a stadium for controlling evacuee accumulation and sequencing. Japan Architectural Review.

Nagel, C., Stadler, A. & Kolbe, T.H. (2009). Conceptual requirements for the automatic reconstruction of building information models from uninterpreted 3D models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34.

Nasir, N.A., Maulud, K.N., & Yusoff, N.I. (2016). Geospatial analysis of road distresses and the relationship with the slope factor. Journal of Engineering Science and Technology, 11, 655-665.

Pan, Z., Wei, Q., Torp, O. & Lau, A. (2019). Influence of evacuation walkway design parameters on passenger evacuation time along elevated rail transit lines using a multi-agent simulation. Journal of Sustainability, 11(21), 6049.

Quezon, E. & Kumala, T. (2018). Investigation of pedestrian safety problems and its countermeasures: A case study in Nekemte City, Ethiopia. International Journal of Engineering and Technical Research (IJETR), 8, 58-64.

Siikonen, M-L., Susi, T. & Hakonen, H. (2001). Passenger traffic flow simulation in tall buildings. Elev. World, 49(8), 117–123.

Taneja, S., Akinci, B., Garrett, J. H. & Soibelman, L. (2016). Algorithms for automated generation of navigation models from building information models to support indoor map-matching. Automation in Construction, 61, 24–41.

Teo, T.A. & Cho, K.H. (2016). BIM-oriented indoor network model for indoor and outdoor combined route planning. Advanced Engineering Informatics, 30(3), 268–282.

Unit Keselamatan, Kesihatan dan Persekitaran Pekerjaan. (2015). Polisi Dan Garis Panduan Pelan Bencana Dalaman, Pusat Perubatan UKM.

Volk, R., Stengel, J. & Schultmann, F. (2014). Building information modeling (BIM) for existing buildings - Literature review and future needs. Automation in Construction, 38, 109–127.

Xiong, Q., Zhu, Q., Du, Z., Zhu, X., Zhang, Y., Niu, L. & Zhou, Y. (2017). A dynamic indoor field model for emergency evacuation simulation. ISPRS International Journal of Geo-Information, 6(4), 104.

Zegeer, V.C. (2002). Pedestrian facilities users guide: providing safety and mobility. US Department of Transportation, Federal Highway Administration (FHWA): McLean, VA, USA.

Zhu, J., Wright, G., Wang, J. & Wang, X. (2018). A critical review of the integration of geographic information system and building information modelling at the data level. ISPRS International Journal of Geo-Information, 1–16.


Refbacks