Multi-site calibration of SWAT for the spatial distribution of sediment yield, Middle Awash Dam watershed, Ethiopia

Tesfu Abebe Abebe Tesema, Kuok-Choy Lam, Bogale GebreMariam, Wasu Manawko Tefera

Abstract


Multi-site calibration of sediment yield has a significant effect on evaluating the spatial distribution of sediment yield of watershed and reservoirs sedimentation. Multi-site calibration was conducted at three gauging stations of the Proposed Middle Awash Dam watershed. The sequential Uncertainty fitting (SUFI-2) calibration uncertainty program (SWAT-CUP) has been used to calibrate and validate flow and sediment parameters using monthly flow and sediment rate observed data. P-factor and R-factor measured model calibration and uncertainty where the P-factor recorded 0.56-0.86/0.54-0.77 and R-factor 0.52-0.93/0.68-0.84 values respectively during the calibration and validation period for the three gauging stations. Model result showed the performance model was excellent during the calibration period with the coefficient of determination R2=0.78-0.82, Nash-Sutcliffe Efficiency ENS=0.77-0.79, Observation Standard Deviation Ratio RSR=0.44-0.48 and percent bias PBIAS=-13.3 to +14.3. Following the calibration process, the model estimated mean annual spatial distribution of sediment yield 7.23 ton/ha/yr at the outlet. Sediment yields spatial distribution showed that among the 19 sub-watersheds ranked based on their sediment yield contributions, eight sub-watersheds have a slope greater than 5%, which is relatively steeper and contributed average annual sediment yields of 16 ton/ha/yr. The temporal variability hydrograph showed 70.8 % of yearly sediment yield in the study area during the rainy season. The study results informed to development of watershed management strategies to minimize the sediment problems in the entire watershed.

Keywords: Hydrological modelling, Middle Awash Dam, sediment yield, spatial distribution, SWAT model


Keywords


Hydrological modelling, Middle Awash Dam, sediment yield, spatial distribution, SWAT model

Full Text:

PDF

References


Abbaspour, K. C. (2014). User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology. Duebendorf, Switzerland, pp101.

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R. & Klöve, B. (2015). Modelling hydrology and water quality of the European Continent at a subbasin scale: calibration of a high-resolution large-scale SWAT model. J. Hydrol., 524, 733–752.

Abbaspour, K. C., Vejdani, M., Haghighat, S., & Yang, J. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. In: MODSIM 2007 international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand, pp 1596–1602

Alemu, M. M. (2016). Integrated watershed management and sedimentation. Journal of Environmental Protection, 7(4), 490–494.

Anton, J. S., Franca, M. J., Juez, C., & De Cesare, G. (2016). Reservoir

sedimentation. J. Hydraul. Res., 54(6), 595–614.

Arnold, J. G., Haney, E. B., Kiniry, J. R., Neitsch, S. L., Srinivasan, R., Neitsch, S. L., & Williams, J. R. (2012). Soil and Water Assessment Tool (SWAT) theoretical documentation version 2012. Texas Water Resources Institute Technical Report No.439, pp650. College Station, Texas.

Azazh, B. (2008). Water Allocation Study of Upper Awash Valley for Existing and Future

Demands (From Koka Reservoir to Metehara Area). Addis Ababa University (M.Sc.

Thesis).

Berhe, F., Melesse, A., Hailu, D., Sileshi, Y. (2013). Catena MODSIM-based water allocation modeling of Awash River basin, Ethiopia. Catena, 109(2013), 118–128. doi: https://doi.org/10.1016/j.catena.2013.04.007

Bishaw, D., & Kedir, Y. (2015). Determining Sediment Load of Awash River entering into Metehara Sugarcane Irrigation Scheme, Ethiopia. Journal of Environment and Earth Science, 13, 224-3216.

Bossa, A.Y., Diekkrüger, B., Igué, A. M., & Gaiser, T. (2012). Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma, 173–174, 61–74.

Brandt, A. (2000). A review of reservoir desiltation. International Journal of Sediment Research, 15(3), 321–342.

Briak, H., Moussadek, R., Aboumaria, K., & Mrabet, R. (2016). Assessing sediment yield in Kalaya gauged 16 watershed (northern Morocco) using GIS and SWAT model. Int. Soil Water Conserv. Res., 4, 177-185.

Buda, A. R., & DeWalle, D. R. (2009). Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA. Hydrological Processes, 23, 3292–3305.

Chiang, L.C., Yuan, Y.P., Mehaffey, M., Jackson, M., Chaubey, I. (2014). Assessing SWAT’s performance in the kaskaskia river watershed as influenced by the number of calibration stations used. Hydrol. Process., 28, 676–687.

Clarke, R. T. (1994). Statistical modeling in Hydrology. John Wiley and Sons, pp 412.

Das, B., Jain, S., & Singh, S. (2019). Evaluation of multisite performance of SWAT model in the Gomti River Basin, India. Appl Water Sci, 9, 134. https://doi.org/10.1007/s13201-019-1013-x

DHV Consulting Engineers. (1983). Re-appraisal and design of irrigation system of the Metehara sugar estate and extension lands. Draft final report (main report), Ethiopian Sugar Corporation. Addis Ababa, Ethiopia.

Elshorbagy, A. A., Panu, U. S., & Simonovic, S. P. (2000). Group-based estimation of missing hydrological data: I. Approach and general methodology. Hydrological Sciences Journal, 45(6), 849-866. DOI: 10.1080/02626660009492388

Ezugwu, C. N. (2013). Sediment deposition in Nigeria reservoirs: impacts and control measures. Innov. Syst. Des. Eng., 4(15), 54–62.

FAO. (2002). Major Soils of the World. Land and Water Digital Media Series Food and Agricultural Organization of the United Nations, CD-ROM, Rome.

Golla, S., EL-Sersawy, H., Ahmed, A. A., & Vanacker, V. (2006). Modelling Water and Sediment Fluxes in Steep River Channels: Case of Awash Basin. International Conference of UNESCO Flanders FIT FRIEND/Nile Project - 'Towards a better cooperation', Date: 2005/11/12 - 2005/11/14, Location: Sharm El-Sheikh, Egypt.

Gupta, H.V., Sorooshian, S., & Yapo, P.O. (1999). Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng., 4(2):135–143

Gyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Application of SWAT model to the Olifants Basin: calibration, validation and uncertainty analysis. J Water Resour Prot., 8, 397–410.

Gyau-Boakye, P. & Schultz, G. A. (1994). Filling gaps in runoff time series in West Africa, Hydrological Sciences Journal, 39(6), 621-636.

Halcrow, W. (1989). Master Plan for the Development of Surface Water Resources in the Awash River Basin. Final Report, vol. 2, Ethiopian Valleys Development Authority, Addis Ababa.

Hallouz, F., Meddi, M., Mahé, G., Alirahmani, S., & Keddar, A. (2018). Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (northwest of Algeria). Water Science, 32, 79–88. https://doi.org/10.1016/j.wsj.2017.12.004

ICOLD. (2012). Sedimentation and sustainable use of reservoirs and river systems. International Committee on Large Dams, Bulletin 147

Kumar, N., Singh, S.K., Srivastava, P.K., & Narsimlu, B. (2017). SWAT model calibration and uncertainty analysis for streamflow prediction of the tons river basin, India, using sequential uncertainty fitting (SUFI-2) algorithm. Model Earth Syst Environ 3, 1–13

Le Roux. (2018). Sediment yield potential in South Africa’s only large river network without a dam: Implications for water resource management. Land Degradation and Development, 29(3), 765-775. https://doi.org/10.1002/ldr.2753

Lee, M., Park, G., Park, M., Park, J., Lee, J., & Kim, S. (2010). Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and Quick Bird high-resolution satellite imagery, Journal of Environmental Science, 22, 819–833,

Li, Q. N., Zhang, J., & Gong, H.-L. (2017). Comparative study of multi-site uncertainty evaluation methods based on SWAT model. Yellow River, 39(1), 24–29.

Liu, Y., Yang, W., Yu, Z., Lung, I., & Gharabaghi, B. (2015). Estimating Sediment Yield from Upland and Channel Erosion at A Watershed Scale Using SWAT. Water Resource Management 29, 1399–1412.

Mamo, K. H. M., & Jain, M. K. (2013). Runoff and sediment modeling using SWAT in Gumera catchment, Ethiopia Open J. Mod. Hydrol., 3, 196-205.

Manaswi, C. M., & Thawait, A. K. (2014). Application of soil and water assessment tool for runoff modeling of Karam River basin in Madhya Pradesh. Int. J. Sci. Eng. Technol., 3(5), 529-532.

Monteith, J. L. (1965). Evaporation and the environment in the state and movement of water in living organisms, XIXth Symposium. Society for Experimental Biology, Swansea, Cambridge University Press. 205-234.

Moriasi D. N., Arnold J. G, Liew M. W., Bingner R. L., Haremel R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Journal of American Society of Agricultural and Biological Engineers, 50, 885-900.

Morris, G. L. & Fan, J. (1998). Reservoir Sedimentation Handbook, McGraw-Hill Book Co., New York.

MoWR (Ministry of Water Resources) (2002). Ethiopian Water Sector Stratagy, MoWR, Addis Ababa, Ethiopia.

Mutenyo, I., Nejadhashemi, A. P., Woznicki, S. A., & Giri, S. (2013). Evaluation of SWAT performance on a mountainous watershed in tropical Africa. Hydrol. Curr. Res., 6 No.Special Issue 3, S14:001 ref.38. DOI: 10.4172/2157-7587.S14-001

Nachtergaele, F., Velthuizen, H. Van, Verelst, L., Batjes, N. H., Dijkshoorn, K., & Engelen, V. W. P. (2010). The harmonized world soil database. Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia (2010), pp. 34-37 1-6 August 2010. https://doi.org/3123

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrology, 10(3), 282-290.

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, K. W. K. (2005). Soil and Water Assessment Tool (SWAT) Theoretical Documentation, Version 2005. Texas: Grassland Soil and Water Research Laboratory, Black land Research Center, Texas Agricultural Experiment Station, Texas Water Resources Institute, College Station. Texas.

Neitsch, S. L., Arnold, J. R., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool (SWAT) Theoretical Documentation Version2009. Texas Water Resources Institute Technical Report No.406, Texas A&M University System, College Station, Texas.

Piniewski, M., & Okruszko, T. (2011). Multi‐site calibration and validation of the hydrological component of SWAT in a large lowland catchment. In Świątek D, Okruszko T (eds), Modelling of Hydrological Processes in the Narew Catchment, Springer-Verlag: Berlin Heidelberg; 15–41.

Qi, C., & Grunwald, S. (2005). GIS-based hydrologic modeling in the Sandusky watershed using SWAT. Trans ASABE, 48(1), 169–180

Samad, N., Chaudhry, M. H., Ashraf, M., Saleem, M., Hamid, Q., & Babar, U. (2016). Sediment yield assessment and identification of check dam sites for Rawal dam catchment. Arabian Journal of Geosciences, 9, 466.

Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37, 1169-1188.

Setegn, S. G., Bijan, D.i, Ragahavan, S., & Assefa, M. M. (2010). Modeling of Sediment Yield from Anjeni-Gauged Watershed, Ethiopia Using SWAT Model. Journal of the American Water Resources Association (JAWRA), 46(3), 514-526. doi:10.1111/j.1752-1688.2010.00431.x

Singh, V, Bankar, N, Salunkhe, S.S., Bera, A.K., & Sharma, J. R. (2013). Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Curr Sci, 104(9), 1187–1199.

Szezesniak, M. & Piniewski, M. (2015). Improvement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchment. Water, 7(2015), 747-779

Telles, T. S., Dechen, S. C. F., de Souza, L. G. A., & Guimarães, M. F. (2013). Valuation and assessment of soil erosion costs. Scientia Agricola, 70(3), 209–216.

Tesema, T. A., & Leta, O. T. (2020). Sediment Yield Estimation and Effect of Management Options on Sediment Yield of Kesem Dam Watershed, Awash Basin, Ethiopia, Scientific African, 10.1016/j.sciaf.2020.e00425, (e00425).

Van Liew, M. W., Arnold, J. G., & Bosch, D. D. (2005). Problems and potential of auto-calibrating a hydrologic model. Transactions of the ASAE. 48(3), 1025-1040. doi: 10.13031/ 2013.18514

Virmani, S. M., Katyal, J. C., Eswaran, H., & Abrol, I., eds. (1994). Stressed Agroecosystems and Sustainable Agriculture. New Delhi: Oxfoszezerd and IBH.

Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., & Yao, A. (2012). Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrology and Earth System Sciences 16, 4621– 4632. DOI: 10.5194/hess-16-4621-2012

Waranyu Buakhao, & Anongrit Kangrang. (2016). DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT. Advances in Civil Engineering, https://doi.org/10.1155/2016/8180158

Welde, K. (2016). Identification and prioritization of sub watersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. International Soil and Water Conservation Research, 4(1), 30-38.

WWDSE (Water Works Design and Supervision Enterprise). (2016). Middle Awash integrated Dam project, Draft Final Report. Addis Ababa, Ethiopia.

Xu, Z.X., Pang, J.P., Liu, C.M, & Li, J.Y. (2009). Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrol Process 23:3619–3630

Xue, C, Chen B., & Wu, H. (2014). Parameter uncertainty analysis of surface flow and sediment yield in the Huolin Basin, China. Journal of Hydrologic Engineering, ASCE 19: 1224–1236.

Zeleke Agide. (2007). Modelling and optimization strategies of the main and field irrigation system in Metahara sugar estate, Ethiopia. MSc Thesis (WSE-HE-LWD-07-07).

Zhang, X. C., Zheng F. L., Chen, J., & Garbrecht, J. D. (2020). Characterizing detachment and transport processes of interrill soil erosion. Geoderma, 376. https://doi.org/10.1016/ j.geoderma.2020.114549




DOI: http://dx.doi.org/10.17576/geo-2021-1704-18

Refbacks

  • There are currently no refbacks.