Evaluation of CHIRPS and CFSR precipitation products over the Mujib Basin, Jordan
Abstract
Open-source climate products provide the possibility of complementing observed data, which sometimes suffer from the scarcity and inconsistency issues. This study aims to evaluate the accuracy of two open-source climate products, Climate Hazards Group Infrared Precipitation with Station (CHIRPS 0.05) and Climate Forecast System Reanalysis (CFSR), in capturing precipitation over the Mujib Basin, Jordan, from 2002 to 2012. Both products were compared with observed data collected from ten climate stations using the point-to-pixel comparison approach at the daily, monthly, seasonal, and annual scales. The coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the relative bias (RB) were used to evaluate the efficiency of CHIRPS and CFSR. While, categorical statistics such as the probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), Heidke skill score (HSS), and frequency bias index (FBI), were used to analyze the precipitation detection capability. Results indicated good correlations between open-source climate products and observed data in the monthly time period, where the R2 values ranged from 0.65 (CFSR) to 0.76 (CHIRPS). Besides that, CHIRPS performed better than CFSR for the daily, monthly, and seasonal time steps, with a better ability in detecting precipitation. Therefore, CHIRPS is recommended to fill the missing gaps of observed data and to detect the drought conditions over the Mujid Basin.
Keywords: CFSR, CHIRPS, Jordan, Mujib Basin, precipitation, validation
Keywords
Full Text:
PDFReferences
Abu Romman, Z., Al‐Bakri, J., & Al Kuisi, M. (2021). Comparison of methods for filling in gaps in monthly rainfall series in arid regions. International Journal of Climatology, 41(15), 6674-6689. https://doi.org/10.1002/joc.7219
Al-Assa’d, T. A., & Abdulla, F. A. (2010). Artificial groundwater recharge to a semi-arid basin: case study of Mujib aquifer, Jordan. Environmental earth sciences, 60(4), 845-859. https://doi.org/10.1007/s12665-009-0222-2
As-syakur, A. R., Osawa, T., Miura, F., Nuarsa, I. W., Ekayanti, N. W., Dharma, I. G. B. S., Adnyana, I. W. S., Arthana, I. W., & Tanaka, T. (2016). Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki. Dynamics of Atmospheres and Oceans, 75, 58-77. https://doi.org/10.1016/ j.dynatmoce.2016.05.004
Ayehu, G. T., Tadesse, T., Gessesse, B., & Dinku, T. (2018). Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmospheric Measurement Techniques, 11(4), 1921-1936. https://doi.org/10.5194/amt-11-1921-2018
Bai, L., Shi, C., Li, L., Yang, Y., & Wu, J. (2018). Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sensing, 10(3), 362. https://doi.org/10.3390/ rs10030362
Chen, S., Kirstetter, P., Hong, Y., Gourley, J., Tian, Y., Qi, Y., Cao, Q., Zhang, J., Howard, K., & Hu, J. (2013). Evaluation of spatial errors of precipitation rates and types from TRMM spaceborne radar over the southern CONUS. Journal of Hydrometeorology, 14(6), 1884-1896. https://doi.org/10.1175/JHM-D-13-027.1
Dembélé, M., & Zwart, S. J. (2016). Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing, 37(17), 3995-4014. https://doi.org/10.1080/01431161.2016.1207258
Dhanesh, Y., Bindhu, V., Senent-Aparicio, J., Brighenti, T. M., Ayana, E., Smitha, P., Fei, C., & Srinivasan, R. (2020). A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sensing, 12(18), 3088. https://doi.org/10.3390/rs12183088
Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data‐scarce watersheds: an application in the Blue Nile River Basin. JAWRA Journal of the American Water Resources Association, 50(5), 1226-1241. https://doi.org/ 10.3390/rs12183088
Dinku, T., Ceccato, P., & Connor, S. J. (2011). Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa. International Journal of Remote Sensing, 32(21), 5965-5979. https://doi.org/10.1080/01431161.2010.499381
Dinku, T., Ruiz, F., Connor, S. J., & Ceccato, P. (2010). Validation and intercomparison of satellite rainfall estimates over Colombia. Journal of Applied Meteorology and Climatology, 49(5), 1004-1014. https://doi.org/10.1175/2009JAMC2260.1
Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. (2016). Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment, 573, 1536-1553. https://doi.org/ 10.1016/j.scitotenv.2016.08.213
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L., & Mekonnen, D. F. (2019). Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of Hydrology, 569, 612-626. https://doi.org/10.1016/j.jhydrol.2018.12.026
Ebert, E. E., Janowiak, J. E., & Kidd, C. (2007). Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American meteorological Society, 88(1), 47-64. https://doi.org/10.1175/BAMS-88-1-47
Fall, C. M. N., Lavaysse, C., Drame, M. S., Panthou, G., & Gaye, A. T. (2019). Wet and dry spells in Senegal: Evaluation of satellite-based and model re-analysis rainfall estimates. Natural Hazards and Earth System Sciences Discussions, 21(3), 1051-1069. https://doi.org/10.5194/nhess-2019-185
Fenta, A. A., Yasuda, H., Shimizu, K., Ibaraki, Y., Haregeweyn, N., Kawai, T., Belay, A. S., Sultan, D., & Ebabu, K. (2018). Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River. Atmospheric Research, 212, 43-53. https://doi.org/10.1016/j.atmosres.2018.05.009
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., & Hoell, A. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. https://doi.org/10.1038/sdata.2015.66
Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., & Verdin, A. P. (2014). A quasi-global precipitation time series for drought monitoring. US Geological Survey data series, 832(4), 1-12. https://dx.doi.org/10.3133/ds832
Gao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., & Cai, W. (2018). Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China. Atmospheric Research, 212, 150-157. https://doi.org/10.1016/j.atmosres.2018.05.016
Guo, J., & Su, X. (2019). Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrology Research, 50(3), 861-877. https://doi.org/10.2166/nh.2019.083
Hordofa, A. T., Leta, O. T., Alamirew, T., Kawo, N. S., & Chukalla, A. D. (2021). Performance evaluation and comparison of satellite-derived rainfall datasets over the Ziway lake basin, Ethiopia. Climate, 9(7), 113. https://doi.org/10.3390/cli9070113
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American meteorological Society, 95(5), 701-722. https://doi.org/10.1175/BAMS-D-13-00164.1
Ji, X., & Chen, Y. (2012). Characterizing spatial patterns of precipitation based on corrected TRMM 3B43 data over the mid Tianshan Mountains of China. Journal of Mountain Science, 9(5), 628-645. DOI: 10.1007/s11629-012-2283-z
Khasawneh, E. (2015). Climate change impacts on water resources in desert area considering irregularity in rainfall intensity and distribution: a case study in Wadi Ziqlab Basin, Jordan. Journal of Natural Sciences Research, 5(16), 1-11.
Li, D., Christakos, G., Ding, X., & Wu, J. (2018). Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). Journal of Hydrology, 556, 1139-1152. https://doi.org/10.1016/j.jhydrol.2017.01.006
Luo, X., Wu, W., He, D., Li, Y., & Ji, X. (2019). Hydrological simulation using TRMM and CHIRPS precipitation estimates in the lower Lancang-Mekong river basin. Chinese Geographical Science, 29(1), 13-25. https://doi.org/10.1007/s11769-019-1014-6
Ma, D., Xu, Y.-P., Gu, H., Zhu, Q., Sun, Z., & Xuan, W. (2019). Role of satellite and reanalysis precipitation products in streamflow and sediment modeling over a typical alpine and gorge region in Southwest China. Science of the Total Environment, 685, 934-950. https://doi.org/10.1016/j.scitotenv.2019.06.183
Macharia, J. M., Ngetich, F. K., & Shisanya, C. A. (2020). Comparison of satellite remote sensing derived precipitation estimates and observed data in Kenya. Agricultural and Forest Meteorology, 284, 107875. https://doi.org/10.1016/j.agrformet.2019.107875
Mantas, V. M., Liu, Z., Caro, C., & Pereira, A. (2015). Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmospheric Research, 163, 132-145. https://doi.org/10.1016/j.atmosres.2014.11.012
Marra, F., Morin, E., Peleg, N., Mei, Y., & Anagnostou, E. N. (2017). Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean. Hydrology and Earth System Sciences, 21(5), 2389-2404. https://doi.org/10.5194/hess-21-2389-2017
Meng, J., Li, L., Hao, Z., Wang, J., & Shao, Q. (2014). Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. Journal of Hydrology, 509, 320-332. https://doi.org/10.1016/j.jhydrol.2013.11.049
Monteiro, L. A., Sentelhas, P. C., & Pedra, G. U. (2018). Assessment of NASA/POWER satellite‐based weather system for Brazilian conditions and its impact on sugarcane yield simulation. International Journal of Climatology, 38(3), 1571-1581. https://doi.org/10.1002/joc.5282
Mourtzinis, S., Rattalino Edreira, J. I., Conley, S. P., & Grassini, P. (2017). From grid to field: Assessing quality of gridded weather data for agricultural applications. European Journal of Agronomy, 82, 163-172. https://doi.org/https://doi.org/10.1016/j.eja. 2016.10.013
Radcliffe, D. E., & Mukundan, R. (2017). PRISM vs. CFSR Precipitation Data Effects on Calibration and Validation of SWAT Models. JAWRA Journal of the American Water Resources Association, 53(1), 89-100. https://doi.org/https://doi.org/10.1111/1752-1688.12484
Ren, P., Li, J., Feng, P., Guo, Y., & Ma, Q. (2018). Evaluation of multiple satellite precipitation products and their use in hydrological modelling over the Luanhe River basin, China. Water, 10(6), 677. https://doi.org/10.3390/w10060677
Rivera, J. A., Marianetti, G., & Hinrichs, S. (2018). Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmospheric Research, 213, 437-449. https://doi.org/10.1016/j.atmosres.2018.06.023
Samawi, M., & Sabbagh, N. (2004). Application of methods for analysis of rainfall intensity in areas of Israeli, Jordanian, and Palestinian interest. Amman: Jordanian Meteorological Department, Ministry of Water and Irrigation.
Satgé, F., Bonnet, M.-P., Gosset, M., Molina, J., Lima, W. H. Y., Zolá, R. P., Timouk, F., & Garnier, J. (2016). Assessment of satellite rainfall products over the Andean plateau. Atmospheric Research, 167, 1-14. https://doi.org/10.1016/j.atmosres.2015.07.012
Shehadeh, N. (1991). The climate of Jordan. Dar Al-Bashir, Amman.
Shen, Y., Xiong, A., Wang, Y., & Xie, P. (2010). Performance of high‐resolution satellite precipitation products over China. Journal of Geophysical Research: Atmospheres, 115(D2). https://doi.org/10.1029/2009JD012097
Stagl, J., Mayr, E., Koch, H., Hattermann, F. F., & Huang, S. (2014). Effects of climate change on the hydrological cycle in Central and Eastern Europe. In Managing protected areas in central and eastern Europe under climate change (pp. 31-43). Springer, Dordrecht.
Tan, M.L., Gassman, P.W. and Cracknell, A.P. (2017) Assessment of Three Long-Term Gridded Climate Products for Hydro-Climatic Simulations in Tropical River Basins. Water 9(3), 229. https://doi.org/10.3390/w9030229
Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A., Angelis, C. F., Salio, P., Kidd, C., & Huffman, G. J. (2012). Global precipitation measurement: Methods, datasets and applications. Atmospheric Research, 104, 70-97. https://doi.org/10.1016/j.atmosres.2011.10.021
Tian, Y., Liu, Y., Arsenault, K. R., & Behrangi, A. (2014). A new approach to satellite-based estimation of precipitation over snow cover. International Journal of Remote Sensing, 35(13), 4940-4951. https://doi.org/10.1080/01431161.2014.930208
Toté, C., Patricio, D., Boogaard, H., Van der Wijngaart, R., Tarnavsky, E., & Funk, C. (2015). Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, 7(2), 1758-1776. https://doi.org/10.3390/rs70201758
Ullah, W., Wang, G., Ali, G., Tawia Hagan, D. F., Bhatti, A. S., & Lou, D. (2019). Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Remote Sensing, 11(6), 628. https://doi.org/10.3390/rs11060628
Wang, Y., Zhao, J., Fu, J., & Wei, W. (2019). Effects of the Grain for Green Program on the water ecosystem services in an arid area of China—Using the Shiyang River Basin as an example. Ecological indicators, 104, 659-668. https://doi.org/10.1016/j.ecolind. 2019.05.045
Wilk, J., Kniveton, D., Andersson, L., Layberry, R., Todd, M. C., Hughes, D., Ringrose, S., & Vanderpost, C. (2006). Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. Journal of Hydrology, 331(1-2), 18-29. https://doi.org/10.1016/j.jhydrol.2006.04.049
Yang, Y., Wang, G., Wang, L., Yu, J., & Xu, Z. (2014). Evaluation of gridded precipitation data for driving SWAT model in area upstream of three gorges reservoir. PLoS One, 9(11), e112725. https://doi.org/10.1371/journal.pone.0112725
Yong, B., Ren, L. L., Hong, Y., Wang, J. H., Gourley, J. J., Jiang, S. H., Chen, X., & Wang, W. (2010). Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resources Research, 46(7). https://doi.org/10.1029/ 2009WR008965
Zambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M., & Lagos, O. (2017). Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmospheric Research, 186, 26-42. https://doi.org/10.1016/j.atmosres.2016.11.006
Zhang, G., Su, X., Ayantobo, O. O., Feng, K., & Guo, J. (2020). Remote-sensing precipitation and temperature evaluation using soil and water assessment tool with multiobjective calibration in the Shiyang River Basin, Northwest China. Journal of Hydrology, 590, 125416. https://doi.org/10.1016/j.jhydrol.2020.125416
Zhang, Y., Li, Y., Ji, X., Luo, X., & Li, X. (2018). Evaluation and hydrologic validation of three satellite-based precipitation products in the upper catchment of the Red River Basin, China. Remote Sensing, 10(12), 1881. https://doi.org/10.3390/rs10121881
Refbacks
- There are currently no refbacks.