Forest mapping in Peninsular Malaysia using Random Forest and Support Vector Machine Classifiers on Google Earth Engine
Abstract
Forests play a crucial role in maintaining the balance of the global ecosystem by sustaining the interactions between living and non-living entities. Changes in forest areas encompass both growth and loss, often driven by development activities. Assessing forest cover and its changes is also a pivotal issue in forest management. Therefore, this study aims to investigate the performance of machine learning algorithms, namely Random Forest (RF) and Support Vector Machine (SVM), in mapping forest cover in Peninsular Malaysia. Landsat 5 TM and Landsat 8 OLI images were utilized to derive forest cover information. The classification process was automated using the remote sensing data management platform, Google Earth Engine (GEE). The accuracy assessment test using the Kappa coefficient resulted in a value of 0.7893 for the RF algorithm and 0.6328 for the SVM algorithm for the year 2010. Whereas, for the year 2020 the Kappa coefficient yielded 0.7475 for RF and 0.5893 for SVM. However, forest cover returned highest RF Kappa coefficient values of 0.875 (2010) and 0.8793 (2020), and SVM Kappa coefficient values of 0.8116 (2010) and 0.7313 (2020). The results implied that RF performed better in the land use classification compared to SVM. It is evident that this study can aid various stakeholders in assessing future plans and developments without compromising the environment.
Keywords: Google Earth Engine (GEE), Landsat, machine learning, Random Forest, stratified random, Support Vector Machine
Keywords
Full Text:
PDFReferences
Alper Akar. (2021). Improving the accuracy of random forest-based land-use classification using fused images and digital surface models produced via different interpolation methods. Concurrency and Computation: Practice and Experience, 34(6), e6787.
Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad Mirzadeh, S., White, L., Banks, S., Montgomery, J., & Hopkinson, C. (2019). Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. Remote Sensing, 11(7), 842.
Asner, G. P. (2009). Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters, 4(3), 034009.
Basten, K. (2016). Classifying Landsat Terrain Images via Random Forests (Bachelor dissertation, Radboud University).
Berberoglu, S., & Akin, A. (2009). Assessing different remote sensing techniques to detect land use-cover changes in the Eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11(1), 46–53.
Cakir, H. I., Khorram, S., & Nelson, S. A. C. (2006). Correspondence analysis for detecting land cover change. Remote Sensing of Environment, 102(3-4), 306–317.
Cánovas-García, F., Alonso-Sarría, F., Gomariz-Castillo, F., & Oñate-Valdivieso, F. (2017). Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery. Computer Geosciences, 103, 1–11.
Czaplewski, R. L. 1994. Variance approximations for assessments of classification accuracy. Res. Pap. RM-316. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO (29 pp.).
Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1-2), 1–11.
Fadli, A. H., Kosugo, A., Ichii, K., & Ramli, R. (2019). Satellite-based monitoring of forest cover change in Indonesia using Google Earth Engine from 2000 to 2016. Journal of Physics: Conference Series volume 1317, The 3rd International Conference on Mathematics, Sciences, Education and Technology. Padang, Indonesia, 4-5 October.
FAO. (2010). Global Forest Resources Assessment 2010. Rome.
Fleiss, J. L., Levin, B., & Paik, M.C. 2013. Statistical methods for rates and proportions, Third edition. John Wiley & Sons.
Forkuo, E. K., & Frimpong, A. (2012). Analysis of forest cover change detection. International Journal of Remote Sensing Applications, 2(4), 82–92.
Fortin, J. A., Cardille, J. A., & Perez, E. (2020). Multi-sensor detection of forest-cover change across 45 years. Remote Sensing of Environment, 238, 111266.
Gautam, P., Shivakoti, G., & Webb, E. (2004). Forest cover change, physiography, local economy and institutions in a Mountain Watershed in Nepal. Environmental Management, 33(1), 48–61.
Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forest for land cover classification. Pattern Recognition Letters, 27(4), 294-300.
Gohar Ghazaryan. 2015. Analysis of temporal and spatial variation of forest (Degree of Master dissertation, University of Muenster).
Gorelick, N., Hanche, M., Dixon, M., Ilyushchenko, S., Thaub, D., & Moore, R. (2017). Google Earth Engine - Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. doi: 10.1016/j.rse.2017.06.031
Hamdan, O., Misman, M. A., & Kassim, A. R. (2017). Synergetic of PALSAR-2 and Sentinel-1A SAR Polar-imetry for retrieving aboveground biomass in dipterocarp forest of Malaysia. Applied Sciences, 7(7),675.
Han, X., Pan, J., & Devlin, A. T. (2018). Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Frontiers of Earth Science, 12(3), 521-531
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850-853.
Hansen, M. C., Potapov, P. V., Pickens, A. H., Tyukavina, A., Hernandez-Serna, A., Zalles, V., Turubanova, S., Kommareddy, I., Stehman, S. V., & Song, X. P. (2022). Global land use extent and dispersion within natural land cover using Landsat data. Environmental Research Letters, 17(3), 034050.
Huang, C., Goward, S. N, Masek, J. G, Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114(1), 183–198.
Huang, C., Song, K., Kim, S., Townshend, J. R. G., Davis, P., Masek, J. G., & Goward, S. N. (2008). Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sensing of Environment, 112(3), 970–985.
Jin, Y., Liu, X., Chen, Y., & Liang, X. (2018). Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. International Journal Remote Sensing, 39(23), 8703–8723.
Jin, Y., Sung, S., Lee, D. K., Biging, G. S., & Jeong, S. (2016). Mapping deforestation in North Korea using Phenology-Based Multi-Index and Random Forest. Remote Sensing, 8(12), 997. doi:10.3390/rs8120997
Kanniah, K. D., Nazarin Ezzaty, M. N., & Tuong, T. V. (2016). Forest cover mapping in Iskandar Malaysia using satellite data. The international archives of the photogrammetry, remote sensing and spatial information sciences, volume xlii-4/W1, International Conference on Geomatic and Geospatial Technology (GGT). Kuala Lumpur, Malaysia, 3–5 Oktober.
Kelley, L. C., Pitcher, L., & Bacon, C. (2018). Using Google Earth Engine to map complex shade-grown coffee landscapes in Northern Nicaragua. Remote Sensing, 10(6), 952.
Landis, J.R. & Koch, G.G. 1977. The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.
Lee, J., & Kang, M. (2015). Geospatial big data: Challenges and opportunities. Big Data Research, 2(2), 74-81. doi: 10.1016/j.bdr.2015.01.003
Li, X., Chen, W., Cheng, X. & Wang, L. (2016). A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 Stereo satellite imagery. Remote Sensing, 8(6), 514.
Lowe, B., & Kulkarni, A. (2015). Multispectral image analysis using Random Forest. International Journal on Soft Computing (IJSC), 6(1), 1-14.
Maxwell, A. E., Strager, M. P., Warner, T. A., Ramezan, C. A., Morgan, A. N., & Pauley, C. E. (2019). Large-area, high spatial resolution land cover mapping using Random Forests, GEOBIA and NAIP orthophotography: Findings and recommendations. Remote Sensing, 11(12), 1409.
Mayaux, P., Eva, H., Gallego, J., Strahler, A. H., Herold, M., Agrawal, S., et al. (2006). Validation of the global land cover 2000 map. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1728–1739.
Mellor, A., Haywood, S. J., & Wilkes, P. (2012). Forest classification using Random Forests with multisource remote sensing and ancillary GIS data. 16th Australian Remote Sensing and Photogrammetry Conference. Australia, Melbourne, 27-28 August
Millard, K., & Richardson, M. (2015). On the importance of training data sample selection in Random Forest image classification: A case study in peatland ecosystem mapping. Remote Sensing,7(7), 8489–8515.
Monserud, R. A. & Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275–293.
Nazarin Ezzaty, M. N. & Kanniah, K. D. (2018). Optical and radar remote sensing data for forest cover mapping in Peninsular Malaysia. Singapore Journal of Tropical Geography, 40(2), 272-290. doi:10.1111/sjtg.12274
Nazarin Ezzaty, M. N. (2015). Forest cover change in Peninsular Malaysia using satellite remote sensing data (Master dissertation, Universiti Teknologi Malaysia).
Negassa, M. D., Mallie, D. T., & Gemeda, D. O. (2020). Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio temporal study on Komto Protected Forest Priority Area, East Wollega Zone, Ethiopia. Environment System Research, 9(1) https://doi.org/10.1186/s40068-020-0163-z
Nitze, I., Barrett, B., & Cawkwell, F. (2015). Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. International Journal of Applied Earth Observation and Geoinformation, 34, 136–46.
Olofsson, P., Kuemmerle, T., Griffiths, P., Knorn, J., Baccini, A., Gancz, V., Blujdea, V., Houghton, R. A., Abrudan, I. V., & Woodcock, C. E. (2011). Carbon implications of forest restitution in post-socialist Romania. Environmental Research Letters, 6(4), 045202.
Osei, J. D., Andam-Akorful, S. A., & Osei jnr, E. M. (2019). Long term monitoring of Ghana’s Forest Reserves. Preprints, 2019090016
Pelletiera, C., Valeroa, S., Inglada, J., Championb, N., & Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156-168.
Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harriz, N., Song, X. P., Bagget, A., Kommareddy, I., & Kommareddy, A. (2022). The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Frontiers in Remote Sensing 3.
Prabhat, K. R. (2013). Forest and land use mapping using remote sensing & Geographical Information System: A case study on model system. Environmental Skeptics and Critics, 2(3), 97-107.
Pretorius, L., Brown, L. R., Bredenkamp, G. J. & van Huyssteen, C. W. (2016). The ecology and classification of wetland vegetation in the Maputaland Coastal Plain, South Africa. Phytocoenologia, 46(2), 125-139.
Qamer, F. M., Shehzad, K., Abbas, S., Murthy, M. S. R, Xi, C., Gilani, H., & Bajracharya, B. (2016). Mapping deforestation and forest degradation patterns in Western Himalaya, Pakistan. Remote Sensing, 8(5), 385. doi:10.3390/rs8050385
Qamer, F. M., Shehzad, K., Abbas, S., Murthy, M. S. R, Xi, C., Gilani, H., & Bajracharya, B. 2016. Mapping deforestation and forest degradation patterns in Western Himalaya, Pakistan. Remote Sensing, 8(5), 385. doi:10.3390/rs8050385
Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153-168.
Rathinagiri, S., Mirunalini, M., Raj, J., Pugalanthi, V., Ravichandran, N., & Anand, V. D. (2010). Remote sensing and GIS based forest cover change detection study in Kalrayan Hills, Tamil Nadu. Journal of Environmental Biology, 31(5), 737–747.
Rio, M. F, Joko, N. R. & Ratna, H. (2016). Analisa perubahan penutupan lahan pada kawasan hutan lindung Gunung Naning Kabupaten Sekadau provinsi Kalimantan Barat. Jurnal Hutan Lestari, 4(4), 520-526.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
Saralioglue, E., & Vatandaslar, C. (2022). Land use/land cover classification with Landsat and Landsat-9 satellite images: A comparative analysis between forest and agriculture dominated landscapes using different machine learning methods. Acta Geodaetica et Geophysica, 57, 695-716.
Sau, A. A. W. T. (2013). Quantifying forest degradation and deforestation using Geographic Information System (GIS): A case study in the three provinces, South Kalimantan, East Kalimantan and South-east Sulawesi, Indonesia (Master dissertation, University of Canterbuy).
Schmidt, J., Marques, M. R., Botti, S., & Marques, M. A. (2019). Recent advances and applications of machine learning in solid-state materials science. NPJ Computational Materials 5(83), 1–36.
Shijuan, C., Curtis, E., Woodcock, E. L., Bullock, P. A, Paata, T., Siqi, P., & Pontus, O. (2021). Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sensing of Environment, 265, 112648.
Sirén, A. H., & Brondizio, E. S. (2009). Detecting subtle land use change in tropical forests. Applied Geography, 29(2), 201–211.
Solomon, N., Hishe, H., Annang, T., Pabi, O., Asante, I. K., & Birhane, E. (2018). Forest cover change, key drivers and community perception in Wujig Mahgo Waren Forest of Northern Ethiopia. Land, 7(1), 32 doi:10.3390/land7010032
Sugumaran, R. (2001). Forest land cover classification using statistical and Artificial Neural Network approaches applied to IRS LISS−III sensor. Geocarto International, 16, 39–44.
Svoboda, J., Stych, P., Lastovicka, J., Paluba, D., & Kobliuk, N. (2022). Random Forest classification of land use, land-use change and forestry (LULUCF) using Sentinel-2 data - A case study of Czechia. Remote sensing, 14(5), 1189.
Tamaluddin, S, Arif, D, Irwan, S. B., & Kuswibowo, N. (2012). Pemanfaatan citra satelit dalam mengidentifikasi perubahan penutupan lahan: Studi kasus Hutan Lindung Register 22 Way Waya Lampung Tengah. Globe, 14(2), 146–156
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sensing, 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., Yadav, K., & Huete, A. (2018). A 30-m Landsat-derived cropland extent product of Australia and China using Random Forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sensing, 144, 325–340.
Vahid, N., Azade, D., Fardin, M., Seyed, M. M. S., & Stelian, A. B. (2022). Land use and land cover mapping using Sentinel-2, Landsat-8 satellite images and Google Earth Engine: A comparison of two composition methods. Remote Sensing, 14(9), 1977.
Venkatappa, M., Sasaki, N., Anantsuksomsri, S. & Smith, B. (2020). Applications of the Google Earth Engine and phenology-based threshold classification method for mapping forest cover and carbon stock changes in Siem Reap Province, Cambodia. Remote Sensing, 12(18), 3110. doi:10.3390/rs12183110
Wagner, J. E., & Stehman, S. V. (2015). Optimizing Sample size allocation to strata for estimating area and map accuracy. Remote Sensing of Environment, 168, 126–133. doi:10.1016/j.rse. 2015.06.027
Wan Abdul Hamid Shukri B. Wan Abd Rahman. (2016). Comparison results of forest cover mapping of Peninsular Malaysia using geospatial technology. IOP Conf. Series Earth and Environmental Science, 37(1), 012027 doi:10.1088/1755-1315/37/1/012027
Yang, C., Yu, M., Hu, F., Jiang, Y., & Li, Y. (2017). Utilizing cloud computing to address big geospatial data challenges. Computers, environment and urban systems, 61, 120-128.
Yang, H., & Yunfeng, Hu. (2020). Detecting forest disturbance and recovery in Primorsky Krai, Russia. Remote Sensing, 12(1), 129; doi:10.3390/rs12010129
Yantao, G., Zhang, X., Long, T., Jiao, W., He, G., Yin, R., & Dong, Y. Y. (2019). China forest extraction based on Google Earth Engine. The international archives of the photogrammetry, remote sensing and spatial information sciences, volume xlii-3/w10, International Conference on Geomatics in the Big Data Era (ICGBD), Guilin, Guangxi. China, 15–17 November.
Zhang, X., Long, T., He, G., & Guo, Y. (2019). Gobal Forest Cover Mapping using Landsat and Google Earth Engine cloud computing. 8th International conference on Agro-Geoinformatics (Agro-Geoinformatics).
Refbacks
- There are currently no refbacks.