Synergizing IFSAR and LiDAR data fusion using Delta Surface Fill for Hybrid DEMs accuracy in topographic mapping
Abstract
A Digital Elevation Model (DEM) continuously represents a ground surface landform created from photogrammetry and field surveys commonly used to produce topographic maps. However, obtaining aerial photography is costly and often fails to capture areas obstructed by clouds, mist, or haze due to the limitation of the optical systems. Consequently, the data collection process lacks efficiency and incurs high costs. Therefore, this study addresses the challenge of enhancing DEM accuracy through a fusion approach using the Delta Surface Fill (DSF) method to fulfill the need for accurate and detailed representations of topographic maps. The investigation focused on fusing Interferometric Synthetic Aperture Radar (IFSAR) and Light Detection and Ranging (LiDAR) data with distinct spatial resolutions and vertical accuracies to generate a Hybrid DEM. The DSF method was applied to fill gaps and reduce noise, ensuring a seamless fusion of datasets. Quantitative analysis unveiled a significant enhancement in vertical positional accuracy with the Hybrid DEM. The Root Mean Square Error (RMSE) for Hybrid DEM was reduced from 1.065 m to 0.312 m, signifying a remarkable 70.7% improvement over IFSAR DEM. Geomorphological assessments demonstrated the Hybrid DEM's aesthetic precision and spatial resolution superiority, contributing to sharper building edges and more explicit topographic features. Terrain profile analysis validated the robustness of the Hybrid DEM, showcasing strong agreement with LiDAR DEM across varying landscape conditions. The result proved that this study provides valuable insights for researchers and professionals engaged in geospatial data fusion, contributing to the advancement of topographic mapping and related applications.
Keywords: Delta Surface Fill, DEM, fusion, IFSAR, LIDAR, topographic map
Keywords
Full Text:
PDFReferences
Abd Mukti, S. N., & Tahar, K. N. (2021). Low altitude multispectral mapping for road defect detection. Geografia-Malaysian Journal of Society and Space, 17(2), 102-115. https://doi.org/10.17576/geo-2021-1702-09
Abrams, M., Crippen, R., & Fujisada, H. (2020). ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sensing, 12(7), 1156. https://doi.org/10.3390/rs12071156
Anantakarn, K., Sornchomkaew, P., & Phothong, T. (2019). Improve quality of global DEM for topographic mapping: Case study of Petchaburi Province, Thailand. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 10(9), 115.
Bagheri, H., Schmitt, M., & Xiao Xiang Zhu. (2018). Fusion of urban TanDEM-X Raw DEMs Using Variational Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4761–4774. https://doi.org/10.1109/jstars.2018.2878608
Bohak, C., Slemenik, M., Kordež, J., & Marolt, M. (2020). Aerial LiDAR Data Augumentation for Direct Point-Cloud Visualisation. Sensors, 20(7), 2089. https://doi.org/10.3390/ s20072089
Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., & Chen, Y. (2018). Registration of Laser Scanning Point Clouds: A Review. Sensors, 18(5), 1641. https://doi.org/10.3390/ s18051641
Deng, S., Zhang, J., Li, P., & Huang, G. (2011). DEM Fusion and Its Application in Mapping Topography of Complex Areas. International Symposium on Image and Data Fusion (pp. 1-4), Tengchong, China. https://doi.org/10.1109/isidf.2011.6024255
Fu, C. Y., & Tsay, J. R. (2016). Statistic Tests Aided Multi-Source DEM Fusion. ISPRS- International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B6, 227–233. https://doi.org/10.5194/isprsarchives-xli-b6-227-2016
González, C., Bachmann, M., Jose-Luis Bueso-Bello, Rizzoli, P., & Zink, M. (2020). A fully automatic algorithm for editing the TanDEM-X Global DEM. Remote Sensing, 12(23), 3961. https://doi.org/10.3390/rs12233961
Kroenung, G., Strebeck, J., & Grohman, G. (2006). Filling SRTM voids: The Delta Surface Fill method. Photogrammetric Engineering and Remote Sensing, 72(3), 213–216.
Guan, L., Hu, J., Pan, H., Wu, W., Sun, Q., Chen, S., & Fan, H. (2020). Fusion of public DEMs based on sparse representation and adaptive regulawrisation variation model. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 125-134.
Haron, N., & Omar, A.H. (2020). Topographic map updating using raster based datasets [Master Dissertation, Universiti Teknologi Malaysia]. Faculty of Built Environment & Surveying.
Hassan, H., & Rahman, S. A. F. S. A. (2021). Integration of Aerial Photography, Airborne LiDAR, and Airborne IFSAR for Mapping in Malaysia. IOP Conference Series: Earth and Environmental Science, 767(1), 012020. https://doi.org/10.1088/1755-1315/767/1/012020
Hoja, D., & d'Angelo, P. (2009). Analysis of DEM combination methods using high resolution optical stereo imagery and interferometric SAR data. ISPRS-The International Archieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(1), 2-5.
Huber, M., Osterkamp, N., Marschalk, U., Tubbesing, R., Wendleder, A., Wessel, B., & Roth, A. (2021). Shaping the Global High-Resolution TanDEM-X Digital Elevation Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7198–7212. https://doi.org/10.1109/jstars.2021.3095178
Idris, R., Abu Bakar, R., & Abdul Rasam, A. R. (2023). LiDAR Assessments and Mapping for Klang Valley: A Case Study at Jinjang District, Selangor. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 445-450.
Intermap. (2016). Product Handbook & Quick Start Guide. Intermap Technologies, Inc.
JUPEM (Department of Survey and Mapping Malaysia). (2018). MS ISO 9001:2015.6.
Kamarulzaman, A. M. M., Jaafar, W. S. W. M., Saad, S. N. M., Omar, H., & Mahmud, M. R. (2021). An object-based approach to detect tree stumps in a selective logging area using Unmanned Aerial Vehicle imagery. Geografia-Malaysian Journal of Society and Space, 17(4), 353-365.
Mesa-Mingorance, J. L., & Ariza-López, F. J. (2020). Accuracy assessment of Digital Elevation Models (DEMs): A critical review of practices of the past three decades. Remote Sensing, 12(16), 2630. https://doi.org/10.3390/rs12162630
Mohamad, N., Ahmad, A., & Md Din, A. H. (2021). Estimation of surface elevation changes at bare earth riverbank using differential DEM technique of UAV imagery data. Geografia-Malaysian Journal of Society and Space, 17(4), 339-352. https://doi.org/10.17576/geo-2021-1704-23
Mohamed, M. H., & Saleh, S. S. (2018). Fusion of SRTM and ASTER GDEM2 DEMs based on height error weighted average technique. Australian Journal of Basic and Applied Sciences, 12(6), 23-29. https://doi.org/10.22587/ajbas.2018.12.6.5
Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., & Mijic, A. (2020). The Use of LiDAR-derived DEM in flood applications: A review. Remote Sensing, 12(14), 2308. https://doi.org/10.3390/rs12142308
Okolie, C. J., & Smit, J. L. (2022). A systematic review and meta-analysis of Digital elevation model (DEM) fusion: Pre-processing, methods and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 1-29.
Pa’suya, F. M., Talib, N., Narashid, R. H., Fauzi, A. A., Mohd, F. A., & Abdullah, M. A. (2022). Quality assessment of TanDEM-X DEM 12m using GNSS-RTK and Airborne IFSAR DEM: A case study of Tuba Island, Langkawi. International Journal of Geoinformatics, 18(5), 87-103.
Papasaika, H., Poli, D., & Baltsavias, E. (2008). A framework for the fusion of Digital Elevation Models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B2), 811–818. https://doi.org/10.3929/ethz-b-000011988
Papasaika, H., Poli, D., & Baltsavias, E. (2009). Fusion of Digital Elevation Models from various data sources. International Conference on Advanced Geographic Information Systems & Web Services (pp. 117-122), Cancun, Mexico. https://doi.org/10.1109/ geows.2009.22
Robinson, N., Regetz, J., & Guralnick, R. P. (2014). EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 57–67. https://doi.org/ 10.1016/j.isprsjprs.2013.11.002
Schindler, K., Papasaika-Hanusch, H., Schütz, S., & Baltsavias, E. (2011). Improving wide-area DEMs through data fusion-chances and limits. Photogrammetric Week, 11, 159-170.
SKiP (SmartKADASTER Interactive Portal). (2020). Putrajaya Map.
Takaku, J., Tadono, T., Doutsu, M., Ohgushi, F., & Kai, H. (2020). Updates of “Aw3d30” Alos Global Digital Surface model with other open access datasets. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020, 183–189. https://doi.org/10.5194/isprs-archives-xliii-b4-2020-183-2020
Tian, Y., Lei, S., Bian, Z., Lu, J., Zhang, S., & Fang, J. (2018). Improving the accuracy of open source digital elevation models with multi-scale fusion and a slope position-based linear regression method. Remote Sensing, 10(12), 1861. https://doi.org/10.3390/rs10121861
Tran, T. A., Raghavan, V., Masumoto, S., Vinayaraj, P., & Yonezawa, G. (2014). A geomorphology-based approach for digital elevation model fusion – case study in Danang city, Vietnam. Earth Surface Dynamics, 2(2), 403–417. https://doi.org/10.5194/esurf-2-403-2014
Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical accuracy of freely available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), 3482. https://doi.org/10.3390/ rs12213482
Wang, X., Holland, D. M., & Gudmundsson, G. H. (2018). Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica. Remote Sensing of Environment, 206, 218–230. https://doi.org/10.1016/ j.rse.2017.12.041
Zhao, S., Liu, J., Cheng, W., & Zhou, C. (2022). Fusion scheme and implementation based on SRTM1, ASTER GDEM V3, and AW3D30. ISPRS International Journal of Geo-Information, 11(3), 207. https://doi.org/10.3390/ijgi11030207.
Refbacks
- There are currently no refbacks.