Geospatial mapping of an Orang Asli (Indigenous People) settlement using a UAV and GIS approach

Nur Hakimah Asnawi, Abdul Aziz Ab Rahman, Rokiah Omar

Abstract


The utilisation of Unmanned Aerial Vehicles (UAV) has become ubiquitous in multidiscipline because of its advanced capabilities and multifunctional. This device can be very useful especially in remote and distant locations such as Orang Asli settlements to determine the geographical characteristics and land-use area for prospective community engagement and development programmes. This study aimed to use a UAV integrated with a Geographic Information System (GIS) to produce a land-use map of a distant rural indigenous community with accurate geospatial data. Aerial photography was captured using a UAV during a field trip to the Pos Gob Orang Asli Settlement, Gua Musang District in October 2019. UAV aerial photography was used to capture high-resolution images of the settlement as it is located deep in the tropical jungle along the Central Spine (Banjaran Titiwangsa) in Kelantan. The aerial photographs captured were analysed using Agisoft Photoscan i.e. photogrammetric digital processing software to produce an orthophoto. The orthophoto was then processed in GIS application for visual interpretation through the digitalisation of the captured geographical features and various socio-cultural developments found in the settlement to generate a land-use map. The digitized land-use features were classified into housing, commercial, institutional, public facilities, infrastructure, utilities, green space/forest, water bodies, and off-road types. Geospatial mapping of remote rural settlements using a UAV and GIS application is an alternative method in acquiring updated land-use patterns instantly. This UAV method has advantage with greater cost-effectiveness in data acquisition especially when funding and manpower is limited. In conclusion, the use of UAV with GIS approach provides a precise method of determining site land area and to produce an updated land use map that can be used for monitoring development planning and implementation of community projects.   

 

Keywords: GIS, indigenous people, land-use, mapping, UAV

 


Keywords


GIS, indigenous people, land-use, mapping, UAV

Full Text:

PDF

References


Abdullah, J., Sayuti, N. M., Arshad, A. A. M., & Embong, M. R. (2016). Living conditions in Orang Asli Resettlement Project (PROSDET) of Pantos, Pahang, Malaysia. Procedia - Social and Behavioral Sciences, 222, 143-150.

Ahmadi, P., Mansor, S. B., Ahmadzadeh Araji, H., & Lu, B. (2023). Convolutional SVM Networks for detection of Ganoderma Boninense at early stage in oil palm using UAV and Multispectral Pleiades Images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 25-30.

Ampatzidis, Y., Partel, V., Meyering, B., & Albrecht, U. (2019). Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence. Computers and Electronics in Agriculture, 164, 104900.

Ansari, E., Akhtar, M. N., Abdullah, M. N., Othman, W. A. F. W., Bakar, E. A., Hawary, A. F., & Alhady, S. S. N. (2021). Image processing of UAV imagery for river feature recognition of Kerian River, Malaysia. Sustainability, 13(17), 9568.

Arif, F., Rahman, A. A. A., & Maulud, K. N. A. (2018). Low-cost unmanned aerial vehicle photogrammetric survey and its application for high-resolution shoreline changes survey. Proceedings of the 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, Kuala Lumpur, Malaysia, 15-19.

Arjomandi, M., Agostino, S., Mammone, M., Nelson, M., & Zhou, T. (2006). Classification of unmanned aerial vehicles. Report for Mechanical Engineering Class, University of Adelaide, Adelaide, Australia, 1-48.

Banerjee, S., & Mitra, S. (2004). Remote surface mapping using orthophotos and geologic maps draped over digital elevation models: Application to the sheep mountain Anticline, Wyoming. American Association of Petroleum Geologists Bulletin, 88(9), 1227-1237.

Chahl, J. (2014). Three biomimetic flight control sensors. International Journal of Intelligent Unmanned Systems, 2(1), 27-39.

Cho, J., Lim, G., Biobaku, T., Kim, S., & Parsaei, H. (2015). Safety and security management with unmanned aerial vehicle (UAV) in oil and gas industry. Procedia Manufacturing, 3, 1343-1349.

Clark, D. R., Meffert, C., Baggili, I., & Breitinger, F. (2017). DROP (Drone Open source Parser) your drone: Forensic analysis of the DJI Phantom III. Digital Investigation, 22, S3-S14.

Eisenbeiss, H. (2011). The potential of unmanned aerial vehicles for mapping. Photogrammetrische Week, 11, 135-145.

Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.

Evaraerts, J. (2008). The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(B1), 1187-1192.

Gâlgău, R., Naș, S. M., Radulescu, V. M., Vereș, I. S., & Bondrea, M. V. (2023). The use of UAVs to obtain necessary information for flooding studies: The case study of Somes River, Floresti, Romania. Applied Sciences, 13(21), 11688.

Gonçalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111.

González-Jorge, H., Martínez-Sánchez, J., Bueno, M., & Arias, P. (2017). Unmanned Aerial systems for civil applications: A review. Drones, 1(1), 1-19.

Gupta, S. G., Ghonge, M., & Jawandhiya, P. M. (2013). Review of Unmanned Aircraft System (UAS). International Journal of Advanced Research in Computer Engineering & Technology, 2(4), 1646-1658.

Hamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation, 89, 102085.

Hassanein, M., Khedr, M., & El-Sheimy, N. (2019). Crop row detection procedure using low-cost uav imagery system. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII/W13, 349-356.

Hassan, N. (2009). Issue and challenges of sustainable urban development in Malaysia. In. Nurhaslina, H. (Eds.), Sustainable urban development issues in Malaysia (pp. 1-22). Dewana Sdn. Bhd.

Hohle, J. (1996). Experiences with the production of digital orthophotos. Photogrammetric Engineering and Remote Sensing, 62(10), 1189-1190.

Hovhannisyan, T., Efendyan, P., & Vardanyan, M. (2018). Creation of a digital model of fields with application of DJI Phantom 3 Drone and the opportunities of its utilization in agriculture. Annals of Agrarian Science, 16(2), 177-180.

Jamal, J., Mohd Zaki, N. A., Talib, N., Md Saad, N., Mokhtar, E. S., Omar, H., Abd Latif, Z., & Suratman, M. N. (2022). Dominant tree species classification using remote sensing data and object-based image analysis. IOP Conference Series: Earth and Environmental Science, 1019, 012018.

JAKOA. (2019). Pelan strategik Jabatan Kemajuan Orang Asli 2016-2020. Jabatan Kemajuan Orang Asli Malaysia.

Junaid, A. B., Lee, Y., & Kim, Y. (2016). Design and implementation of autonomous wireless charging station for rotary-wing UAVs. Aerospace Science and Technology, 54, 253-266.

Keyvanfar, A., Shafaghat, A., & Awanghamat, M. A. (2021). Optimization and trajectory analysis of drone’s flying and environmental variables for 3D modelling the construction progress monitoring. International Journal of Civil Engineering, 20, 363-388.

Kujawski, A., Lemke, J., & Dudek, T. (2019). Concept of using unmanned aerial vehicle (UAV) in the analysis of traffic parameters on oder waterway. Transportation Research Procedia, 39, 231-241.

Lee, C. C., Koo, V. C., Lim, T. S., Lee, Y. P., & Abidin, H. (2022). A multi-layer perceptron-based approach for early detection of BSR disease in oil palm trees using hyperspectral images. Heliyon, 8(4), e09252.

Lucieer, A., Jong, S. M., & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV Photography. Progress in Physical Geography, 38(1), 97-116.

Masron, T., Masami, F., & Ismail, N. (2013). Orang Asli in Peninsular Malaysia: Population, spatial distribution and socio-economic condition. J Ritsumeikan Soc Sci Humanit, 6, 75-115.

Malandrino, F., Chiasserini, C.F., Casetti, C., Chiaraviglio, L., & Senacheribbe, A. (2019). Planning UAV activities for efficient user coverage in disaster areas. Ad Hoc Networks, 89, 177-185.

Mangiameli, M., Muscato, G., Mussumeci, G., & Milazzo, C. (2013). A GIS application for UAV flight planning. IFAC Proceedings Volumes, 46(30), 147-151.

Mohd Noor, N., & Hashim, M. (2021). Environmental gaseous sensing using sniffer drone for urban development control. International Conference on Unmanned Aerial System in Geomatics, 145-156.

Mohd Noor, N., Abdullah, A., & Hashim, M. (2018). Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conference Series: Earth and Environmental Science, 169, 012003.

Mokhtar, M., Daud, M. E., Kaamin, M., Hayazi, F., Sabri, M. S., Hamid, N. B., Abd Kadir, A., & Zain, N. A. M. (2023). Evaluation coastal volume changes with UAV photogrammetry: An example in West Coast Malaysia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 33(2), 67-75.

Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., & Pesci, A. (2003). Global positioning systems and digital photogrammetry for the monitoring of mass movements: Application to the Ca'di Malta landslide (northern Apennines, Italy). Engineering Geology, 68(1-2), 103-121.

Nasir, F., Roslee, A., Zakaria, J., Ariffin, E. H., & Mokhtar, N. A. (2022). Shoreline identification bias: Theoretical and measured value for meso-tidal beaches in Kuala Nerus, Terengganu (Malaysia). Journal of Marine Science and Application, 21(3), 184-192.

Nebiker, S, Annen, A., Scherrer, M., & Oesch, D. (2008). A light-weight multispectral sensor for micro UAV—opportunities for very high resolution airborne remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(3), 1193-1200.

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1-15.

Nordin, Z., & Salleh, A. M. (2022). Application of unmanned aerial vehicle (UAV) in terrain mapping: Systematic literature review. International Journal of Sustainable Construction Engineering and Technology, 13(4), 216-223.

Norhayati, M., Aniza, I., & Norfazilah, A. (2018). Housing infrastructure and quality of life of Orang Asli and Non-Orang Asli populations in Kuala Langat Selangor. Malaysian Journal of Public Health Medicine, 18(1), 28-37.

Pepe, M., Fregonese, L., Scaioni, M., & Pepe, M. (2018). Planning airborne photogrammetry and remote- sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1), 412–36.

Popoola, O, Salami, A., Adepoju, K., Alaga, A., Oloko-Oba, M., & Badru, R. (2016). Updating landuse map of Obafemi Awolowo University Campus using low-cost unmanned aerial vehicle (UAV) image. Journal of Geography, Environment and Earth Science International, 8(3), 1-7.

Pytharouli, S., Souter, J., & Tziavou, O. (2019). Unmanned aerial vehicle (UAV) based mapping in engineering surveys: Technical considerations for optimum results. 4th Joint International Symposium on Deformation Monitoring.

Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148.

Remondino, F., Barazzetti, L., Nex, F. C., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3D modeling: Current status and future perspectives. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g) (pp. 25-31), 14-16 September, Zurich, Switzerland.

Rodríguez, R. M., Alarcón, F., Rubio, D. S., & Ollero, A. (2013). Autonomous management of an UAV airfield. Proceedings of The 3rd International Conference on Application and Theory of Automation in Command and Control Systems (pp. 28-30), Naples, Italy.

Ruzgiene, B., & Aksamitauskas, C. (2013). The use of UAV systems for mapping of built-up area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 349-353.

Sah, S. S., Maulud, K. N. A., Sharil, S., Karim, O. A., & Pradhan, B. (2023). Monitoring of three stages of paddy growth using multispectral vegetation index derived from UAV images. The Egyptian Journal of Remote Sensing and Space Sciences, 26(4), 989-998.

Samad, A. M., Kamarulzaman, N., Hamdani, M. A., Mastor, T. A., & Hashim, K. A. (2013, August). The potential of Unmanned Aerial Vehicle (UAV) for civilian and mapping application. IEEE 3rd International Conference on System Engineering and Technology (pp. 313-318).

Sekolah rimba terap minat belajar. (2017, May 22). Sinar Harian.

Shah, N. M., Rus, R. C., Mustapha, R., Hussain, M. A M., & Wahab, N. A. (2018). The Orang Asli profile in Peninsular Malaysia: Background & challenges. International Journal of Academic Research in Business and Social Sciences, 8(7), 1157-1164.

Silva, L. D. O., Bandeira, R. A. D. M., & Campos, V. B. G. (2017). The use of UAV and geographic information systems for facility location in a post-disaster scenario. Transportation Research Procedia, 27, 1137-1145.

Sonnemann, T. F., Hung, J. U., & Hofman, C. L. (2016). Mapping indigenous settlement topography in the Caribbean using drones. Remote Sensing, 8(10), 1-17.

Spencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering, 5(2), 199-222.

Steven, M. C., Solomon, P. D., Arumugam, P., Rasali, R., Dominic, A. C., Ideris, H. M., & Marius, D. F. A. P. (2024). Unmanned aerial vehicle for wide area larvicide spraying (WALS) using Vectobac® WG at Kota Kinabalu, Sabah. The Journal of Infection in Developing Countries, 18(02), 299-302.

Suhaizad, L., Khalid, N., & Abu Sari, M. (2023). Tree Height and Crown Extraction From UAV-Based Multispectral Imagery. International Journal of Geoinformatics, 19(5), 61-68.

Suteris, M. S., Rahman, F. A., & Ismail, A. (2018). Route schedule optimization method of unmanned aerial vehicle implementation for maritime surveillance in monitoring trawler activities in Kuala Kedah, Malaysia. International Journal of Supply Chain Management, 7(5), 245-249.

Sutheerakul, C., Kronprasert, N., Kaewmoracharoen, M., & Pichayapan, P. (2017). Application of unmanned aerial vehicles to pedestrian traffic monitoring and management for shopping streets. Transportation Research Procedia, 25, 1717-1734.

The World Bank. (2015). Malaysia among most urbanized countries in East Asia. http://www.worldbank.org/en/news/feature/2015/01/26/malaysia-among-most-urbanized-countries-in-east-asia

Tiwari, A., & Dixit, A. (2015). Unmanned aerial vehicle and geospatial technology pushing the limits of development. American Journal of Engineering Research, 4(1), 16-21.

Trujano, F., Chan, B., Beams, G., & Rivera, R. (2016). Security analysis of DJI Phantom 3 standard. Massachusetts Institute of Technology 1.

Tuan Lah, A. (2017). “Sekolah Rimba” khas untuk anak Orang Asli Pos Gob. Kosmo.

Van Trung, Le Phu, V., Trang, T. N. H., & Khai, H. Q. (2023). Opportunities and challenges of UAV Application for monitoring the construction progress and updating the geographic database in urban area of Ho Chi Minh City, Vietnam. IOP Conference Series: Earth and Environmental Science, 1170(1), 012014.

Verhoeven, G., Taelman, D., & Vermeulen, F. (2012). Computer Vision-based orthophoto mapping of complex archaeological sites: The ancient quarry of Pitaranha (Portugal-Spain). Archaeometry, 54(6), 1114-1129.

World Bank Open Data. (n.d.). Urban population (% of total population) - Malaysia. https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=MY

Xia, G. S., Datcu, M., Yang, W., & Bai, X. (2018). Information Processing for unmanned aerial vehicles (UAVs) in surveying, mapping, and navigation. Geo-Spatial Information Science, 21(1), 1.

Xiang, H.,& Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174-190.

Yazid, A. S. M., Wahid, R.A ., Nazrin, K. M., Ahmad, A., Nasruddin, A. S., Rozilawati, D., Hamzah, M. A., & Razak, M. Y. A. (2019). Terrain mapping from unmanned aerial vehicles. Journal of Advanced Manufacturing Technology, 13(1), 1–16.

Zailani, M. A. H., Sabudin, R. Z. A. R., Rahman, R. A., Saiboon, I. M., Ismail, A., & Mahdy, Z. A. (2021). Drone technology in maternal healthcare in Malaysia: A narrative review. The Malaysian journal of pathology, 43(2), 251-259.

Zolkepli, M. F., Ishak, M. F., Yunus, M. Y. M., Zaini, M. S. I., Wahap, M. S., Yasin, A. M., Sidik, M.H. & Hezmi, M. A. (2021). Application of Unmanned Aerial Vehicle (UAV) for slope mapping at Pahang Matriculation College, Malaysia. Physics and Chemistry of the Earth, Parts A/B/C, 123, 103003.


Refbacks

  • There are currently no refbacks.