Projection of rainfall distribution map under the impact of RCP4.5 and RCP8.5 climate change scenarios: A case study of Penang Island, Malaysia
Abstract
Malaysia experiences abundant rainfall, which can potentially lead to geo-hydrological disasters. Therefore, studying the effect of climate change on rainfall events is crucial. The General Circulation Model (GCM) is a well-accepted terrestrial-scale climate simulation approach widely employed by climate scientists and researchers worldwide. However, despite its comprehensive approach, GCM lacks in necessary precision at the local level due to its coarse resolution. Consequently, employing statistical downscaling techniques becomes essential for achieving accurate simulations at the local scale. Notably, there is a scarcity of localized studies focusing on the climate change effect, specifically in Penang Island. Penang Island was selected as the study area due to its high urbanization rate and frequent geo-hydrological disasters. The current study assessed the impact of climate change on mean annual rainfall (MAR) distribution using a statistical downscaling model (SDSM) under two representative concentration pathways (RCP4.5 and RCP8.5). SDSM is calibrated and validated, and rainfall spatial distribution maps are generated through Kriging and IDW methods for the observed (1990-2019) and future (2070-2099) periods. The results indicate that under both RCPs, MAR projections increased. RCP8.5 (14.93%) shows a higher effect, where the increment percentage is almost double that of RCP4.5 (8.6%). The model displays strong correlation and performance, with a disparity of 1.24% to 11.73%, averaging 7.50%, between observed and modelled results. The outcomes of this research hold significant implications for local authorities, providing valuable insights to enhance preparedness and response strategies concerning the evolving climate conditions, particularly in the context of geo-hydrological hazards, environmental concerns, and water security in Penang Island. However, it is crucial to acknowledge the study's limitation, considering only two climate scenarios (RCP4.5 and RCP8.5). Future research efforts should involve a broader spectrum of climate scenarios to yield a more comprehensive understanding of climate change's multifaceted and unpredictable nature for enhanced robustness of future climate-related strategies and policies.
Keywords: Climate change, Mean Annual Rainfall, Penang Island, Representative Concentration Pathway, Statistical Downscaling Model (SDSM)
Keywords
Full Text:
PDFReferences
Abdul Rahman, H. (2018). Climate change scenarios in Malaysia: Engaging the public. International Journal of Malay-Nusantara Studies, 1(2), 55–77.
ABed, S. S. (2021). Future climate projections in Algeria using statistical downscaling model. Research Square, 1-28.
Adib, M. N. M., & Harun, S. (2022). Metalearning approach coupled with CMIP6 Multi-GCM for future monthly streamflow forecasting. Journal of Hydrologic Engineering, 27(6).
Adib, Muhammad Nasir Mohd, Harun, S., & Rowshon, M. K. (2022). Long-term rainfall projection based on CMIP6 scenarios for Kurau River Basin of rice-growing irrigation scheme, Malaysia. SN Applied Sciences, 4(70).
Ahmadi, M., Motamedvaziri, B., Ahmadi, H., Moeini, A., & Zehtabiyan, G. R. (2019). Assessment of climate change impact on surface runoff, statistical downscaling and hydrological modeling. Physics and Chemistry of the Earth, 114, 102800.
Almazroui, M., Islam, M. N., Balkhair, K. S., Şen, Z., & Masood, A. (2017). Rainwater harvesting possibility under climate change: A basin-scale case study over western province of Saudi Arabia. Atmospheric Research, 189, 11–23.
Amin, M. Z. M., Shaaban, A. J., Ercan, A., Ishida, K., Kavvas, M. L., Chen, Z. Q., & Jang, S. (2017). Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Science of the Total Environment, 575, 12–22.
Amirabadizadeh, M., Ghazali, A. H., Huang, Y. F., & Wayayok, A. (2016). Downscaling daily precipitation and temperatures over the Langat River Basin in Malaysia : A comparison of two statistical downscaling approaches. International Journal of Water Resources and Environmental Engineering, 8, 120–136.
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., & Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20.
Borges, P., Franke, J., Anunciação, Y. M. T., Weiss, H., & Bernhofer, C. (2016). Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theoretical and Applied Climatology, 123, 335–348.
Builes-Jaramillo, A., & Pántano, V. (2021). Comparison of spatial and temporal performance of two Regional Climate Models in the Amazon and La Plata river basins. Atmospheric Research, 250, 105413.
CCDS. (2020). Canadian climate data and scenarios. https://climate-scenarios.canada.ca/
Cordeiro Pires, A., Nolasco, R., Rocha, A., Ramos, A. M., & Dubert, J. (2016). Climate change in the Iberian Upwelling System: A numerical study using GCM downscaling. Climate Dynamics, 47, 451–464.
Dar, M. U. D., Aggarwal, R., & Kaur, S. (2019). Climate predictions for Ludhiana district of Indian Punjab under RCP 4.5 and RCP 8.5. International Journal of Environment and Climate Change, 8(2), 128-141.
Eingrüber, N., & Korres, W. (2022). Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Science of the Total Environment, 838(1), 155775.
El Hafyani, M., Essahlaoui, N., Essahlaoui, A., Mohajane, M., & Van Rompaey, A. (2023). Generation of climate change scenarios for rainfall and temperature using SDSM in a Mediterranean environment: A case study of Boufakrane river watershed, Morocco. Journal of Umm Al-Qura University for Applied Sciences, 9, 436-448.
ESRI. (2021a). IDW - Help | ArcGIS for Desktop. https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/idw.htm
ESRI. (2021b). Kriging—Help | ArcGIS for Desktop. https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/kriging.htm
Goodarzi, M., & Faraji, A. (2022). Analysis of Low-Flow Indices in the Era of climate change: An application of CanESM2 model. In U. Chatterjee, A. O. Akanwa, S. Kumar, S. K. Singh, & A. Dutta Roy (Eds.), Ecological footprints of climate change : Adaptive approaches and sustainability (pp. 95–115). Springer International Publishing.
Gunathilake, M. B., Samarasinghe, H. D. J. T., Bandara, I., & Chathuranika, I. (2022). Analysis of Statistical Downscaling Model ( SDSM ) projected future rainfall in Northwestern, Western and Southern provinces of Sri Lanka Analysis of Statistical Downscaling Model ( SDSM ) projected future rainfall in Northwestern, Western and Southern. Ruhuna Journal of Science, 13(1), 70–91.
Hailu, M., Mishra, S., Jain, S., & Singh, V. (2022). Evaluation and application of SDSM to assess the projected climate change effects on the Tekeze watershed, Ethiopia. Modeling Earth Systems and Environment, 9, 1275-1285.
Han, Y., Yang, J., & Das, L. C. (2023). Evaluation of Sdsm Models for Climate Predictions in Bangladesh. International Journal of Big Data Mining for Global Warming, 5(1), 235003.
Hasan, D., Ratnayake, U., Shams, S., Nayan, Z., & Rahman, E. (2018). Prediction of climate change in Brunei Darussalam using statistical downscaling model. Theoretical and Applied Climatology, 133(3), 343-360.
Hassan, Z., & Harun, S. (2011). Hydrological response of a catchment to climate change in the Kurau River Basin , Perak , Malaysia. 3rd International Conference on Managing Rivers in the 21st Century: Sustainable solutions for global crisis of flooding, pollution and water scarcity (pp. 216-225), 6th - 9th December, Penang, Malaysia.
Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., Zhu, A. X., Chen, W., & Ahmad, B. Bin. (2018). Landslide susceptibility mapping using J48 decision tree with adaboost, bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 163, 399–413.
Huang, Y. F., Ang, J. T., Tiong, Y. J., Mirzaei, M., & Amin, M. Z. M. (2016). Drought Forecasting using SPI and EDI under RCP-8.5 Climate change scenarios for Langat River Basin, Malaysia. Procedia Engineering, 154, 710–717.
Hussain, M., Yusof, K. W., Mustafa, M. R., & Afshar, N. R. (2015). Application of statistical downscaling model (SDSM) for long term prediction of rainfall in Sarawak, Malaysia. WIT Transactions on Ecology and the Environment, 196, 269-278.
Kabiri, R., Ramani Bai, V., & Chan, A. (2013). Regional precipitation scenarios using a spatial statistical downscaling approach for Klang watershed , Malaysia. Journal of Environmental Research And Development, 8(1), 126–134.
Kim, H. G., Lee, D. K., Park, C., Kil, S., Son, Y., & Park, J. H. (2015). Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environmental Earth Sciences, 73, 1385–1400.
Lal, P. N., Mitchell, T., Aldunce, P., Auld, H., Mechler, R., Miyan, A., Romano, L. E., Zakaria, S., Dlugolecki, A., Masumoto, T., Ash, N., Hochrainer, S., Hodgson, R., Islam, T. U., Mc Cormick, S., Neri, C., Pulwarty, R., Rahman, A., Ramalingam, B., … Wilby, R. (2012). National systems for managing the risks from climate extremes and disasters. In Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change (Vol. 9781107025). Cambridge University Press.
Lim, H. S., Jafri, M. Z. M., Abdullah, K., & Rajah, J. (2009). A case study of global warming in Penang Island, Malaysia. IOP Conference Series: Earth and Environmental Science, 6, 412029.
Mahdaoui, K., & Asmlal, L. (2023). Downscaling future climate changes under RCP emission scenarios using CanESM2 climate model over the Bouregreg catchment, Morocco. Modeling Earth Systems and Environment, 9, 2797-2807.
Malaysian Meteorological Department. (2009). Climate change scenarios for Malaysia 2001–2099.
Mavume, A. F., Banze, B. E., Macie, O. A., & Queface, A. J. (2021). Analysis of climate change projections for mozambique under the representative concentration pathways. Atmosphere, 12(5), 588.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.
Munawar, S., Rahman, G., Moazzam, M. F. U., Miandad, M., Ullah, K., Al-Ansari, N., & Linh, N. T. T. (2022). Future climate projections using SDSM and LARS-WG downscaling methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere, 13(6), 898.
Munawar, S., Tahir, M. N., & Baig, M. H. A. (2021). Future climate change impacts on runoff of scarcely gauged jhelum river basin using SDSM and RCPS. Journal of Water and Climate Change, 12(7), 2993–3004.
Mwabumba, M., Yadav, B. K., Rwiza, M. J., Larbi, I., Dotse, S. Q., Limantol, A. M., Sarpong, S., & Kwawuvi, D. (2022). Rainfall and temperature changes under different climate scenarios at the watersheds surrounding the Ngorongoro Conservation area in Tanzania. Environmental Challenges, 7, 100446.
NAHRIM. (2013). Estimation of Future Design Rainstorm under the Climate Change Scenario in Peninsular Malaysia (Issue 1).
Noor, M., Ismail, T., Chung, E. S., Shahid, S., & Sung, J. H. (2018). Uncertainty in rainfall intensity duration frequency curves of Peninsular Malaysia under changing climate scenarios. Water, 10(12), 1750.
Onarun, T., & Sittichok, K. (2023). Development of statistical downscaling methods for the assessment of rainfall characteristics under climate change scenarios Uncorrected Proof. Journal of Water & Climate Change, 14(16), 2970-2987.
Onarun, T., Thepprasit, C., & Sittichok, K. (2023). Development of statistical downscaling methods for the assessment of rainfall characteristics under climate change scenarios. Journal of Water and Climate Change, 14(9), 2970-2987.
Pour, S. H., Harun, S. Bin, & Shahid, S. (2014). Genetic programming for the downscaling of extreme rainfall events on the east coast of peninsular Malaysia. Atmosphere, 5(4), 914–936.
Protong, S., Carling, P. A., & Leyland, J. (2018). Climate change and landslide risk assessment in uttaradit province, Thailand. Engineering Journal, 22(1), 243–255.
Rana, M., Adhikary, S., & Islam, M. (2023). Prediction of future temperature and precipitation changes in Bhola dstrict of Bangladesh using SDSM. 7th International Conference on Engineering Research, Innovation and Education, 12-14 January, Sylhet, Bangladesh.
Rana, M. M., & Adhikary, S. K. (2023). Climate change projection over southwest coastal region of Bangladesh using statistical downscaling model. AIP Conference Proceedings, 2713, 050016.
Raymond, P. L., Pabst, T., Bussière, B., & Bresson, É. (2020). Impact of climate change on extreme rainfall events and surface water management at mine waste storage facilities. Journal of Hydrology, 590, 125383.
Rianna, G., Zollo, A., Tommasi, P., Paciucci, M., Comegna, L., & Mercogliano, P. (2014). Evaluation of the effects of climate changes on landslide activity of Orvieto Clayey Slope. Procedia Earth and Planetary Science, 9, 54–63.
Robinson, P. J., & Finkelstein, P. L. (1991). The development of impact-oriented climate scenarios. Bulletin - American Meteorological Society, 72(4), 481–490.
Sa’adi, Z., Alias, N. E., Yusop, Z., Chow, M. F., Muhammad, M. K. I., Mazilamani, L. S., Ramli, M. W. A., Shiru, M. S., Mohamad, N. A., Rohmat, F. I. W., & Khambali, M. H. M. (2024a). Spatiotemporal assessment of rainfall and drought projection for integrated dam management in Benut River Basin, Malaysia under CMIP6 scenarios. Environmental Challenges, 15, 100892.
Sa’adi, Z., Alias, N. E., Yusop, Z., Iqbal, Z., Houmsi, M. R., Houmsi, L. N., Ramli, M. W. A., & Muhammad, M. K. I. (2024b). Application of relative importance metrics for CMIP6 models selection in projecting basin-scale rainfall over Johor River basin, Malaysia. Science of the Total Environment, 912, 169187.
Sa, Z., Eliza, N., Yusop, Z., Magdy, M., Shukla, P., Rajab, M., Athirah, N., Sanusi, M., Sa, N., Khairul, M., Muhammad, I., & Iqbal, Z. (2024). Characterization of the future northeast monsoon rainfall based on the clustered climate zone under CMIP6 in Peninsular Malaysia. Atmospheric Research, 304, 107407.
Sammathuria, M. K., & Ling, L. K. (2009). Regional climate observation and simulation of extreme temperature and precipitation trends (pp. 1-9). IRCSA Conference, 3-6 Aug, Kuala Lumpur, Malaysia.
Siabi, E. K., Kabobah, A. T., Akpoti, K., Anornu, G. K., Amo-Boateng, M., & Nyantakyi, E. K. (2021). Statistical downscaling of global circulation models to assess future climate changes in the Black Volta basin of Ghana. Environmental Challenges, 5, 100299.
Sørland, S. L., Schär, C., Lüthi, D., & Kjellström, E. (2018). Bias patterns and climate change signals in GCM-RCM model chains. Environmental Research Letters, 13(7), 074017.
Syafrina, A. H., Zalina, M. D., & Norzaida, A. (2017). Climate projections of future extreme events in Malaysia. American Journal of Applied Sciences, 14(3), 392–405.
Takhellambam, B. S., Srivastava, P., Lamba, J., Zhao, W., Kumar, H., Tian, D., & Molinari, R. (2024). Artificial neural network-empowered projected future rainfall intensity-duration-frequency curves under changing climate. Atmospheric Research, 297, 107122.
Tan, M. L., Ibrahim, A. L., Yusop, Z., Chua, V. P., & Chan, N. W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research, 189, 1–10.
Tang, K. H. D. (2019). Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Science of the Total Environment, 650(2), 1858–1871.
Tukimat, N. N. A., Ahmad Syukri, N. A., & Malek, M. A. (2019). Projection the long-term ungauged rainfall using integrated Statistical Downscaling Model and Geographic Information System (SDSM-GIS) model. Heliyon, 5(9), e02456.
Van Vuuren, D. P., & Carter, T. R. (2014). Climate and socioeconomic scenarios for climate change research and assessment: reconciling the new with the old. Climatic Change, 122, 415–429.
Van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran, A., Oostenrijk, R., & van Ruijven, B. (2011). RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 109, 95.
WHO. (2018). Climate Change and Health. World Health Organization Website. https://doi.org/10.17843/rpmesp.2016.331.2006
Wilby, R. L., & Dawson, C. W. (2007). SDSM 4.2— A decision support tool for th e assessment of regional climate change impacts, User Manual (pp. 1-94). Department of Geography, Lancaster University, UK.
Wilby, R. L., & Dawson, C. W. (2015). Statistical DownScaling Model-Decision Centric (SDSM-DC) Version 5.2 Supplementary Note 6 march 2015.
Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM — A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145–157.
Yang, C. K., Shan, F. P., & Tien, T. L. (2020). Climate change detection in Penang island using deterministic interpolation methods. Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 412–419.
Yin, L. H., Ting, N. Y., Shan, F. P., Shimizu, K., & Lateh, H. (2019). Estimation of precipitation data by using deterministic interpolation methods: A case study in Penang Island. AIP Conference Proceedings, 2184(1), 050018.
Zarei, Y., Khorshiddoust, A. M., Banafsheh, M. R., & Rostamzadeh, H. (2023). Assessing the impacts of global climate change on climate elements of temperature and precipitation in disparate climatic zones of Iran using RCP scenarios. Journal of Geography and Planning, 27(83), 64–71.
Zhang, L. E. I., Xu, Y., Meng, C., Li, X., Liu, H., & Wang, C. (2020). Comparison of statistical and dynamic downscaling techniques in generating high-resolution temperatures in China from CMIP5 GCMs. Journal of Applied Meteorology and Climatology, 59(2), 207–235.
Refbacks
- There are currently no refbacks.